Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Future Sci OA ; 9(1): FSO837, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37006230

RESUMO

Aim: The current study investigated the performance of 4 widely used DNA extraction kits using different types of high (stool) and low biomass samples (chyme, broncho alveolar lavage and sputum). Methods: Qiagen Powerfecal Pro DNA kit, Macherey Nucleospin Soil kit, Macherey Nucleospin Tissue Kit and MagnaPure LC DNA isolation kit III were evaluated in terms of DNA quantity, quality, diversity and composition profiles. Results: The quantity and quality of DNA varied among the four kits. The microbiota of the stool samples showed similar diversity and compositional profiles for the 4 kits. Conclusion: Despite differences in DNA quality and quantity, the 4 kits yielded similar results for stool samples, while all kits were not sensitive enough for low biomass samples.


DNA extraction is a major factor affecting the microbial profile of various samples. Considering that different kits are commonly used such as QIAamp PowerFecal Pro DNA kit (QPFPD, QIAGEN), Macherey Nucleospin Soil (MNS, MACHEREY-NAGEL) Macherey Nucleospin Tissue (MNT, MACHEREY-NAGEL) and MagnaPure LC DNA isolation kit III (MPLCD, ROCHE), this study aimed to assess their performance using high (feces) and low-biomass samples. The kits were equally effective for feces samples but not sensitive enough for low biomass samples (chyme, bronchoalveolar lavage fluid and sputum).

2.
J Med Microbiol ; 71(5)2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35511246

RESUMO

During this global pandemic of the COVID-19 disease, a lot of information has arisen in the media and online without scientific validation, and among these is the possibility that this disease could be aggravated by a secondary bacterial infection such as Prevotella, as well as the interest or not in using azithromycin, a potentially active antimicrobial agent. The aim of this study was to carry out a systematic literature review, to prove or disprove these allegations by scientific arguments. The search included Medline, PubMed, and Pubtator Central databases for English-language articles published 1999-2021. After removing duplicates, a total of final eligible studies (n=149) were selected. There were more articles showing an increase of Prevotella abundance in the presence of viral infection like that related to Human Immunodeficiency Virus (HIV), Papillomavirus (HPV), Herpesviridae and respiratory virus, highlighting differences according to methodologies and patient groups. The arguments for or against the use of azithromycin are stated in light of the results of the literature, showing the role of intercurrent factors, such as age, drug consumption, the presence of cancer or periodontal diseases. However, clinical trials are lacking to prove the direct link between the presence of Prevotella spp. and a worsening of COVID-19, mainly those using azithromycin alone in this indication.


Assuntos
COVID-19 , Coinfecção , Azitromicina/farmacologia , Humanos , Pandemias , Prevotella , SARS-CoV-2
3.
Front Cell Dev Biol ; 10: 835594, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399518

RESUMO

When mammalian spermatozoa are released in the female reproductive tract, they are incapable of fertilizing the oocyte. They need a prolonged exposure to the alkaline medium of the female genital tract before their flagellum gets hyperactivated and the acrosome reaction can take place, allowing the sperm to interact with the oocyte. Ionic fluxes across the sperm membrane are involved in two essential aspects of capacitation: the increase in intracellular pH and the membrane hyperpolarization. In particular, it has been shown that the SLO3 potassium channel and the sNHE sodium-proton exchanger, two sperm-specific transmembrane proteins, are necessary for the capacitation process to occur. As the SLO3 channel is activated by an increase in intracellular pH and sNHE is activated by hyperpolarization, they act together as a positive feedback system. Mathematical modeling provides a unique tool to capture the essence of a molecular mechanism and can be used to derive insight from the existing data. We have therefore developed a theoretical model formalizing the positive feedback loop between SLO3 and sHNE in mouse epididymal sperm to see if this non-linear interaction can provide the core mechanism explaining the existence of uncapacited and capacitated states. We show that the proposed model can fully explain the switch between the uncapacitated and capacited states and also predicts the existence of a bistable behaviour. Furthermore, our model indicates that SLO3 inhibition, above a certain threshold, can be effective to completely abolish capacitation.

4.
Cells ; 11(4)2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35203266

RESUMO

Alzheimer's disease is characterized by a marked dysregulation of intracellular Ca2+ homeostasis. In particular, toxic ß-amyloids (Aß) perturb the activities of numerous Ca2+ transporters or channels. Because of the tight coupling between Ca2+ dynamics and the membrane electrical activity, such perturbations are also expected to affect neuronal excitability. We used mathematical modeling to systematically investigate the effects of changing the activities of the various targets of Aß peptides reported in the literature on calcium dynamics and neuronal excitability. We found that the evolution of Ca2+ concentration just below the plasma membrane is regulated by the exchanges with the extracellular medium, and is practically independent from the Ca2+ exchanges with the endoplasmic reticulum. Thus, disruptions of Ca2+ homeostasis interfering with signaling do not affect the electrical properties of the neurons at the single cell level. In contrast, the model predicts that by affecting the activities of L-type Ca2+ channels or Ca2+-activated K+ channels, Aß peptides promote neuronal hyperexcitability. On the contrary, they induce hypo-excitability when acting on the plasma membrane Ca2+ ATPases. Finally, the presence of pores of amyloids in the plasma membrane can induce hypo- or hyperexcitability, depending on the conditions. These modeling conclusions should help with analyzing experimental observations in which Aß peptides interfere at several levels with Ca2+ signaling and neuronal activity.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Cálcio/metabolismo , Homeostase , Humanos , Neurônios/metabolismo
5.
Mol Oral Microbiol ; 35(1): 19-28, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31782910

RESUMO

The use of next generation sequencing and bioinformatics has revealed the complexity and richness of the human oral microbiota. While some species are well known for their periodontal pathogenicity, the molecular-based approaches for bacterial identification have raised awareness about new putative periodontal pathogens. Although they are found increased in case of periodontitis, there is currently a lack of data on their interrelationship with the periodontal measures. We processed the sequencing data of the subgingival microbiota of 75 patients with hemochromatosis and chronic periodontitis in order to characterize the well-described and newly identified subgingival periodontal pathogens. We used correlation tests and statistical models to assess the association between the periodontal pathogens and mean pocket depth, and to determine the most relevant bacterial biomarkers of periodontitis severity. Based on correlation test results, nine taxa were selected and included in the statistical models. The multiple linear regression models adjusted for systemic and periodontal clinical variables showed that mean pocket depth was negatively associated with Aggregatibacter and Rothia, and positively associated with Porphyromonas. Furthermore, a bacterial ratio that was previously described as a signature of dysbiosis in periodontitis (%Porphyromonas+%Treponema+%Tannerella)/(%Rothia+%Corynebacterium) was the most significant predictor. In this specific population, we found that the best model in predicting the mean pocket depth was microbial dysbiosis using the dysbiosis ratio taxa formula. While further studies are needed to assess the validity of these results on the general population, such a dysbiosis ratio could be used in the future to monitor the subgingival microbiota.


Assuntos
Periodontite Crônica , Microbiota , Bactérias/genética , Disbiose , Humanos , Porphyromonas gingivalis
6.
Neuron ; 104(5): 972-986.e6, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31761708

RESUMO

How neural circuits develop in the human brain has remained almost impossible to study at the neuronal level. Here, we investigate human cortical neuron development, plasticity, and function using a mouse/human chimera model in which xenotransplanted human cortical pyramidal neurons integrate as single cells into the mouse cortex. Combined neuronal tracing, electrophysiology, and in vivo structural and functional imaging of the transplanted cells reveal a coordinated developmental roadmap recapitulating key milestones of human cortical neuron development. The human neurons display a prolonged developmental timeline, indicating the neuron-intrinsic retention of juvenile properties as an important component of human brain neoteny. Following maturation, human neurons in the visual cortex display tuned, decorrelated responses to visual stimuli, like mouse neurons, demonstrating their capacity for physiological synaptic integration in host cortical circuits. These findings provide new insights into human neuronal development and open novel avenues for the study of human neuronal function and disease. VIDEO ABSTRACT.


Assuntos
Neurogênese/fisiologia , Células Piramidais/citologia , Células Piramidais/fisiologia , Células Piramidais/transplante , Animais , Diferenciação Celular/fisiologia , Xenoenxertos , Humanos , Camundongos , Córtex Visual/citologia , Córtex Visual/fisiologia
7.
Pflugers Arch ; 471(11-12): 1467-1480, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31655878

RESUMO

We propose an upgraded version of our previously designed open-source lipid bilayer amplifier. This improved amplifier is now suitable both for the use in introductory courses in biophysics and neurosciences at the undergraduate level and for scientific research. Similar to its predecessor, the OpenPicoAmp-100k is designed using the common lithographic printed circuit board fabrication process and off-the-shelf electronic components. It consists of the high-speed headstage, followed by voltage-gain amplifier with built-in 6-order Bessel filter. The amplifier has a bandwidth of 100 kHz in the presence of 100-pF input membrane capacitance and is capable of measuring ion channel current with amplitudes from sub-pA and up to ± 4 nA. At the full bandwidth and with a 1 GΩ transimpedance gain, the amplifier shows 12 pArms noise with an open input and 112 pArms noise in the presence of 100-pF input capacitance, while at the 5-kHz bandwidth (typical in single-channel experiments), noise amounts to 0.45 pArms and 2.11 pArms, respectively. Using an optocoupler circuit producing TTL-controlled current impulses and using 50% threshold analysis, we show that at full bandwidth, the amplifier has deadtimes of 3.5 µs and 5 µs at signal-to-noise ratios (SNR) of 9 and 1.7, respectively. Near 100% of true current impulses longer than 5 µs and 6.6 µs are detected at these two respective SNRs, while false event detection rate remains acceptably low. The wide bandwidth of the amplifier was confirmed in bilayer experiments with alamethicin, for which open ion channel current events shorter that 10 µs could be resolved.


Assuntos
Eletrofisiologia/métodos , Bicamadas Lipídicas/metabolismo , Amplificadores Eletrônicos , Canais Iônicos/metabolismo
8.
Int J Mol Sci ; 21(1)2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31892239

RESUMO

NMDA receptors (NMDA-R) typically contribute to excitatory synaptic transmission in the central nervous system. While calcium influx through NMDA-R plays a critical role in synaptic plasticity, experimental evidence indicates that NMDAR-mediated calcium influx also modifies neuronal excitability through the activation of calcium-activated potassium channels. This mechanism has not yet been studied theoretically. Our theoretical model provides a simple description of neuronal electrical activity that takes into account the tonic activity of extrasynaptic NMDA receptors and a cytosolic calcium compartment. We show that calcium influx mediated by the tonic activity of NMDA-R can be coupled directly to the activation of calcium-activated potassium channels, resulting in an overall inhibitory effect on neuronal excitability. Furthermore, the presence of tonic NMDA-R activity promotes bistability in electrical activity by dramatically increasing the stimulus interval where both a stable steady state and repetitive firing can coexist. These results could provide an intrinsic mechanism for the constitution of memory traces in neuronal circuits. They also shed light on the way by which ß -amyloids can alter neuronal activity when interfering with NMDA-R in Alzheimer's disease and cerebral ischemia.


Assuntos
Cálcio/metabolismo , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Isquemia Encefálica/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais da Membrana/fisiologia , Memória/fisiologia , Modelos Animais , Plasticidade Neuronal/fisiologia , Canais de Potássio Cálcio-Ativados/metabolismo , Sinapses/metabolismo
9.
Sci Rep ; 8(1): 15532, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341355

RESUMO

Genetic haemochromatosis (GH) is responsible for iron overload. Increased transferrin saturation (TSAT) has been associated with severe periodontitis, which is a chronic inflammatory disease affecting tissues surrounding the teeth and is related to dysbiosis of the subgingival microbiota. Because iron is essential for bacterial pathogens, alterations in iron homeostasis can drive dysbiosis. To unravel the relationships between serum iron biomarkers and the subgingival microbiota, we analysed samples from 66 GH patients. The co-occurrence analysis of the microbiota showed very different patterns according to TSAT. Healthy and periopathogenic bacterial clusters were found to compete in patients with normal TSAT (≤45%). However, significant correlations were found between TSAT and the proportions of Porphyromonas and Treponema, which are two genera that contain well-known periopathogenic species. In patients with high TSAT, the bacterial clusters exhibited no mutual exclusion. Increased iron bioavailability worsened periodontitis and promoted periopathogenic bacteria, such as Treponema. The radical changes in host-bacteria relationships and bacterial co-occurrence patterns according to the TSAT level also suggested a shift in the bacterial iron supply from transferrin to NTBI when TSAT exceeded 45%. Taken together, these results indicate that iron bioavailability in biological fluids is part of the equilibrium between the host and its microbiota.


Assuntos
Disbiose/complicações , Gengiva/microbiologia , Hemocromatose/complicações , Mucosa Bucal/química , Periodontite/fisiopatologia , Transferrina/análise , Adulto , Bactérias/classificação , Bactérias/isolamento & purificação , Feminino , Humanos , Ferro/análise , Masculino , Pessoa de Meia-Idade , Soro/química
10.
Front Mol Neurosci ; 11: 380, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30374290

RESUMO

Glycine receptors (GlyRs) containing the α2 subunit are highly expressed in the developing brain, where they regulate neuronal migration and maturation, promote spontaneous network activity and subsequent development of synaptic connections. Mutations in GLRA2 are associated with autism spectrum disorder, but the underlying pathophysiology is not described yet. Here, using Glra2-knockout mice, we found a GlyR-dependent effect on neonatal spontaneous activity of dorsal striatum medium spiny neurons (MSNs) and maturation of the incoming glutamatergic innervation. Our data demonstrate that functional GlyRs are highly expressed in MSNs of one-week-old mice, but they do not generate endogenous chloride-mediated tonic or phasic current. Despite of that, knocking out the Glra2 severely affects the shape of action potentials and impairs spontaneous activity and the frequency of miniature AMPA receptor-mediated currents in MSNs. This reduction in spontaneous activity and glutamatergic signaling can attribute to the observed changes in neonatal behavioral phenotypes as seen in ultrasonic vocalizations and righting reflex. In adult Glra2-knockout animals, the glutamatergic synapses in MSNs remain functionally underdeveloped. The number of glutamatergic synapses and release probability at presynaptic site remain unaffected, but the amount of postsynaptic AMPA receptors is decreased. This deficit is a consequence of impaired development of the neuronal circuitry since acute inhibition of GlyRs by strychnine in adult MSNs does not affect the properties of glutamatergic synapses. Altogether, these results demonstrate that GlyR-mediated signaling supports neonatal spontaneous MSN activity and, in consequence, promotes the functional maturation of glutamatergic synapses on MSNs. The described mechanism might shed light on the pathophysiological mechanisms in GLRA2-linked autism spectrum disorder cases.

11.
Cell Calcium ; 74: 94-101, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30015247

RESUMO

Calretinin has been detected in various excitable cells but the presence and putative roles of such a calcium-binding protein has never been characterized in sperm. Epididymal spermatozoa were collected from C57Bl6 (wild-type, WT) or calretinin knockout (CR-/-) mice and Wistar rats. A specific staining for calretinin was detected by immunofluorescence in the principal piece of the flagellum, both in WT mouse and rat spermatozoa. Western blots confirmed the expression of calretinin in rat and WT spermatozoa as well as its absence in CR-/- mice. No significant difference was observed in the spontaneous acrosome reaction between WT and CR-/- sperm. The addition of the calcium-ionophore A-23187, Thapsigargin or Progesterone to WT or CR-/- incubated spermatozoa induced increases in the acrosome reaction but the stimulatory effects were identical in both genotypes. Motility measurements assessed by computer-assisted sperm analysis indicated that, under basal non-stimulatory conditions, CR-/- sperm exhibited a lower curvilinear velocity and a smaller lateral head movement amplitude, although no difference was observed for the beat cross frequency. After incubation with 25 mM NH4Cl, the curvilinear velocity, the amplitude of the lateral head movement and the hyperactivation were increased, while the beat cross frequency was decreased, in both genotypes. Evaluation of the in vivo fertility potential indicated that the CR-/- litter sizes were clearly reduced compared to the WT litter sizes. Our study describes, for the first time, the expression of calretinin in sperm. These data extend the potential implication of calcium-binding proteins in the sperm calcium-signaling cascade and bring new insights into the understanding of sperm physiology.


Assuntos
Calbindina 2/biossíntese , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/metabolismo , Animais , Calbindina 2/análise , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Wistar , Espermatozoides/química
12.
EMBO Rep ; 19(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30002119

RESUMO

Melanoma antigen genes (Mage) were first described as tumour markers. However, some of Mage are also expressed in healthy cells where their functions remain poorly understood. Here, we describe an unexpected role for one of these genes, Maged1, in the control of behaviours related to drug addiction. Mice lacking Maged1 are insensitive to the behavioural effects of cocaine as assessed by locomotor sensitization, conditioned place preference (CPP) and drug self-administration. Electrophysiological experiments in brain slices and conditional knockout mice demonstrate that Maged1 is critical for cortico-accumbal neurotransmission. Further, expression of Maged1 in the prefrontal cortex (PFC) and the amygdala, but not in dopaminergic or striatal and other GABAergic neurons, is necessary for cocaine-mediated behavioural sensitization, and its expression in the PFC is also required for cocaine-induced extracellular dopamine (DA) release in the nucleus accumbens (NAc). This work identifies Maged1 as a critical molecule involved in cellular processes and behaviours related to addiction.


Assuntos
Comportamento Aditivo/genética , Transtornos Relacionados ao Uso de Cocaína/genética , Cocaína/farmacologia , Proteínas de Neoplasias/fisiologia , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/fisiologia , Animais , Cocaína/administração & dosagem , Dependovirus , Dopamina/metabolismo , Deleção de Genes , Ácido Glutâmico/metabolismo , Locomoção/efeitos dos fármacos , Locomoção/genética , Masculino , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Neurônios/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Reforço Psicológico , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia
13.
J Clin Periodontol ; 44(9): 892-897, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28586532

RESUMO

AIM: To investigate the association between periodontal status and serum biomarkers in patients with HFE haemochromatosis. MATERIAL AND METHODS: This clinical case series included 84 HFE-C282Y homozygous patients. Periodontal evaluation was performed using clinical attachment level, probing depth, gingival bleeding index, visible plaque index and gingival index. Serum markers of iron metabolism were collected from medical records. The relationship between serum biomarkers of iron burden and the severity of periodontitis was investigated. RESULTS: The study population consisted of 47 men and 37 women, routinely treated in the Unit of Hepatology, University Hospital, Rennes. All patients presented with periodontitis (mild: n = 1, moderate: n = 37 and severe: n = 46). There was a positive association between transferrin saturation >45% and the severity of periodontitis (adjusted odds ratio = 5.49, p = .002). CONCLUSION: Severe periodontitis is associated with the severity of iron burden in patients with HFE-related hereditary haemochromatosis. Dental examination should be included in the initial assessment of all these patients.


Assuntos
Biomarcadores/sangue , Hemocromatose/sangue , Periodontite/sangue , Adulto , Idoso , Feminino , Hemocromatose/genética , Proteína da Hemocromatose/genética , Humanos , Sobrecarga de Ferro/genética , Masculino , Pessoa de Meia-Idade , Índice Periodontal , Periodontite/genética
14.
Appl Environ Microbiol ; 83(14)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28476771

RESUMO

Periodontitis is driven by disproportionate host inflammatory immune responses induced by an imbalance in the composition of oral bacteria; this instigates microbial dysbiosis, along with failed resolution of the chronic destructive inflammation. The objectives of this study were to identify microbial signatures for health and chronic periodontitis at the genus level and to propose a model of dysbiosis, including the calculation of bacterial ratios. Published sequencing data obtained from several different studies (196 subgingival samples from patients with chronic periodontitis and 422 subgingival samples from healthy subjects) were pooled and subjected to a new microbiota analysis using the same Visualization and Analysis of Microbial Population Structures (VAMPS) pipeline, to identify microbiota specific to health and disease. Microbiota were visualized using CoNet and Cytoscape. Dysbiosis ratios, defined as the percentage of genera associated with disease relative to the percentage of genera associated with health, were calculated to distinguish disease from health. Correlations between the proposed dysbiosis ratio and the periodontal pocket depth were tested with a different set of data obtained from a recent study, to confirm the relevance of the ratio as a potential indicator of dysbiosis. Beta diversity showed significant clustering of periodontitis-associated microbiota, at the genus level, according to the clinical status and independent of the methods used. Specific genera (Veillonella, Neisseria, Rothia, Corynebacterium, and Actinomyces) were highly prevalent (>95%) in health, while other genera (Eubacterium, Campylobacter, Treponema, and Tannerella) were associated with chronic periodontitis. The calculation of dysbiosis ratios based on the relative abundance of the genera found in health versus periodontitis was tested. Nonperiodontitis samples were significantly identifiable by low ratios, compared to chronic periodontitis samples. When applied to a subgingival sample set with well-defined clinical data, the method showed a strong correlation between the dysbiosis ratio, as well as a simplified ratio (Porphyromonas, Treponema, and Tannerella to Rothia and Corynebacterium), and pocket depth. Microbial analysis of chronic periodontitis can be correlated with the pocket depth through specific signatures for microbial dysbiosis.IMPORTANCE Defining microbiota typical of oral health or chronic periodontitis is difficult. The evaluation of periodontal disease is currently based on probing of the periodontal pocket. However, the status of pockets "on the mend" or sulci at risk of periodontitis cannot be addressed solely through pocket depth measurements or current microbiological tests available for practitioners. Thus, a more specific microbiological measure of dysbiosis could help in future diagnoses of periodontitis. In this work, data from different studies were pooled, to improve the accuracy of the results. However, analysis of multiple species from different studies intensified the bacterial network and complicated the search for reproducible microbial signatures. Despite the use of different methods in each study, investigation of the microbiota at the genus level showed that some genera were prevalent (up to 95% of the samples) in health or disease, allowing the calculation of bacterial ratios (i.e., dysbiosis ratios). The correlation between the proposed ratios and the periodontal pocket depth was tested, which confirmed the link between dysbiosis ratios and the severity of the disease. The results of this work are promising, but longitudinal studies will be required to improve the ratios and to define the microbial signatures of the disease, which will allow monitoring of periodontal pocket recovery and, conceivably, determination of the potential risk of periodontitis among healthy patients.


Assuntos
Bactérias/isolamento & purificação , Disbiose/microbiologia , Microbiota , Periodontite/microbiologia , Bactérias/classificação , Bactérias/genética , Feminino , Humanos , Masculino
15.
Front Mol Neurosci ; 10: 442, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375305

RESUMO

Medium spiny neurons (MSNs) of the dorsal striatum represent the first relay of cortico-striato-thalamic loop, responsible for the initiation of voluntary movements and motor learning. GABAergic transmission exerts the main inhibitory control of MSNs. However, MSNs also express chloride-permeable glycine receptors (GlyRs) although their subunit composition and functional significance in the striatum is unknown. Here, we studied the function of GlyRs in MSNs of young adult mice. We show that MSNs express functional GlyRs, with α2 being the main agonist binding subunit. These receptors are extrasynaptic and depolarizing at resting state. The pharmacological inhibition of GlyRs, as well as inactivation of the GlyR α2 subunit gene hyperpolarize the membrane potential of MSNs and increase their action potential firing offset. Mice lacking GlyR α2 showed impaired motor memory consolidation without any changes in the initial motor performance. Taken together, these results demonstrate that tonically active GlyRs regulate the firing properties of MSNs and may thus affect the function of basal ganglia.

16.
Gut ; 66(5): 872-885, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-26838600

RESUMO

OBJECTIVE: To identify a causal mechanism responsible for the enhancement of insulin resistance and hyperglycaemia following periodontitis in mice fed a fat-enriched diet. DESIGN: We set-up a unique animal model of periodontitis in C57Bl/6 female mice by infecting the periodontal tissue with specific and alive pathogens like Porphyromonas gingivalis (Pg), Fusobacterium nucleatum and Prevotella intermedia. The mice were then fed with a diabetogenic/non-obesogenic fat-enriched diet for up to 3 months. Alveolar bone loss, periodontal microbiota dysbiosis and features of glucose metabolism were quantified. Eventually, adoptive transfer of cervical (regional) and systemic immune cells was performed to demonstrate the causal role of the cervical immune system. RESULTS: Periodontitis induced a periodontal microbiota dysbiosis without mainly affecting gut microbiota. The disease concomitantly impacted on the regional and systemic immune response impairing glucose metabolism. The transfer of cervical lymph-node cells from infected mice to naive recipients guarded against periodontitis-aggravated metabolic disease. A treatment with inactivated Pg prior to the periodontal infection induced specific antibodies against Pg and protected the mouse from periodontitis-induced dysmetabolism. Finally, a 1-month subcutaneous chronic infusion of low rates of lipopolysaccharides from Pg mimicked the impact of periodontitis on immune and metabolic parameters. CONCLUSIONS: We identified that insulin resistance in the high-fat fed mouse is enhanced by pathogen-induced periodontitis. This is caused by an adaptive immune response specifically directed against pathogens and associated with a periodontal dysbiosis.


Assuntos
Imunidade Adaptativa , Infecções por Bacteroidaceae/complicações , Disbiose/imunologia , Resistência à Insulina/imunologia , Periodontite/imunologia , Periodontite/prevenção & controle , Porphyromonas gingivalis , Animais , Transplante de Células , Dieta Hiperlipídica , Modelos Animais de Doenças , Disbiose/microbiologia , Disbiose/prevenção & controle , Feminino , Gengiva/microbiologia , Hiperglicemia/imunologia , Hiperglicemia/microbiologia , Interferon gama/sangue , Interleucina-6/sangue , Lipopolissacarídeos/imunologia , Linfonodos/citologia , Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Microbiota , Periodontite/microbiologia , Periodontite/patologia , Porphyromonas gingivalis/imunologia , Distribuição Aleatória , Baço/citologia , Vacinação
17.
Med Sci (Paris) ; 32(8-9): 768-70, 2016.
Artigo em Francês | MEDLINE | ID: mdl-27615186

RESUMO

Optical imaging of voltage indicators is a promising approach for detecting the activity of neuronal circuits with high spatial and temporal resolution. In this context, genetically encoded voltage indicators, combining genetic targeting and optical readout of transmembrane voltage, represent a technological breaktrough that will without doubt have a major impact in neuroscience. However, so far the existing genetically encoded voltage indicators lacked the capabilities to detect individual action potentials and fast spike trains in live animals. Here, we present a novel indicator allowing high-fidelity imaging of individual spikes and dentritic voltage dynamics in vivo. Used in combination with optogenetics, which allows to manipulate neuronal activity, this opens the possibility of an all-optical electrophysiology.


Assuntos
Fenômenos Eletrofisiológicos , Eletrofisiologia/tendências , Optogenética , Potenciais de Ação/fisiologia , Animais , Rastreamento de Células/métodos , Eletrofisiologia/métodos , Corantes Fluorescentes/química , Humanos , Potenciais da Membrana/fisiologia , Rede Nervosa/anatomia & histologia , Rede Nervosa/citologia , Rede Nervosa/diagnóstico por imagem , Optogenética/métodos , Optogenética/tendências
18.
Neurobiol Dis ; 94: 157-68, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27353294

RESUMO

The cerebellar pathologies in peroxisomal diseases underscore that these organelles are required for the normal development and maintenance of the cerebellum, but the mechanisms have not been resolved. Here we investigated the origins of the early-onset coordination impairment in a mouse model with neural selective deficiency of multifunctional protein-2, the central enzyme of peroxisomal ß-oxidation. At the age of 4weeks, Nestin-Mfp2(-/-) mice showed impaired motor learning on the accelerating rotarod and underperformed on the balance beam test. The gross morphology of the cerebellum and Purkinje cell arborization were normal. However, electrophysiology revealed a reduced Purkinje cell firing rate, a decreased excitability and an increased membrane capacitance. The distribution of climbing and parallel fiber synapses on Purkinje cells was immature and was accompanied by an increased spine length. Despite normal myelination, Purkinje cell axon degeneration was evident from the occurrence of axonal swellings containing accumulated organelles. In conclusion, the electrical activity, axonal integrity and wiring of Purkinje cells are exquisitely dependent on intact peroxisomal ß-oxidation in neural cells.


Assuntos
Cerebelo/metabolismo , Proteína Multifuncional do Peroxissomo-2/metabolismo , Células de Purkinje/metabolismo , Sinapses/fisiologia , Animais , Axônios/metabolismo , Ataxia Cerebelar/metabolismo , Camundongos Knockout , Proteína Multifuncional do Peroxissomo-2/deficiência
19.
J Neurosci ; 36(18): 4976-92, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27147651

RESUMO

UNLABELLED: The basal ganglia (BG) control action selection, motor programs, habits, and goal-directed learning. The striatum, the principal input structure of BG, is predominantly composed of medium-sized spiny neurons (MSNs). Arising from these spatially intermixed MSNs, two inhibitory outputs form two main efferent pathways, the direct and indirect pathways. Striatonigral MSNs give rise to the activating, direct pathway MSNs and striatopallidal MSNs to the inhibitory, indirect pathway (iMSNs). BG output nuclei integrate information from both pathways to fine-tune motor procedures and to acquire complex habits and skills. Therefore, balanced activity between both pathways is crucial for harmonious functions of the BG. Despite the increase in knowledge concerning the role of glutamate NMDA receptors (NMDA-Rs) in the striatum, understanding of the specific functions of NMDA-R iMSNs is still lacking. For this purpose, we generated a conditional knock-out mouse to address the functions of the NMDA-R in the indirect pathway. At the cellular level, deletion of GluN1 in iMSNs leads to a reduction in the number and strength of the excitatory corticostriatopallidal synapses. The subsequent scaling down in input integration leads to dysfunctional changes in BG output, which is seen as reduced habituation, delay in goal-directed learning, lack of associative behavior, and impairment in action selection or skill learning. The NMDA-R deletion in iMSNs causes a decrease in the synaptic strength of striatopallidal neurons, which in turn might lead to a imbalanced integration between direct and indirect MSN pathways, making mice less sensitive to environmental change. Therefore, their ability to learn and adapt to the environment-based experience was significantly affected. SIGNIFICANCE STATEMENT: The striatum controls habits, locomotion, and goal-directed behaviors by coordinated activation of two antagonistic pathways. Insofar as NMDA receptors (NMDA-Rs) play a key role in synaptic plasticity essential for sustaining these behaviors, we generated a mouse model lacking NMDA-Rs specifically in striatopallidal neurons. To our knowledge, this is the first time that a specific deletion of inhibitory, indirect pathway medium-sized spiny neuron (iMSN) NMDA-Rs has been used to address the role of these receptors in the inhibitory pathway. Importantly, we found that this specific deletion led to a significant reduction in the number and strength of the cortico-iMSN synapses, which resulted in the significant impairments of behaviors orchestrated by the basal ganglia. Our findings indicate that the NMDA-Rs of the indirect pathway are essential for habituation, action selection, and goal-directed learning.


Assuntos
Comportamento Animal/fisiologia , Corpo Estriado/fisiologia , Globo Pálido/fisiologia , Locomoção/fisiologia , Vias Neurais/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Sinapses/fisiologia , Animais , Condicionamento Operante/fisiologia , Corpo Estriado/citologia , Potenciais Pós-Sinápticos Excitadores/genética , Globo Pálido/citologia , Objetivos , Habituação Psicofisiológica/genética , Habituação Psicofisiológica/fisiologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Destreza Motora/fisiologia , Proteínas do Tecido Nervoso/genética , Receptores de N-Metil-D-Aspartato/genética
20.
Vet Microbiol ; 180(1-2): 65-74, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26320605

RESUMO

We have previously described that a strain of Salmonella Heidelberg with a hypermutator phenotype, B182, adhered strongly to HeLa cells. In this work, we showed that this hypermutator Salmonella strain invaded HeLa epithelial cells and induced cytoskeleton alteration. Those changes lead to HeLa cell death which was characteristic of apoptosis. For the first time, we showed that this hypermutator strain induced apoptosis associated with the activation of caspases 2, 9 and 3. Complementation of B182 strain showed a decrease in cells death induction. In the presence of other Salmonella Heidelberg with a normomutator phenotype, such as WT and SL486, cell death and caspase 3 were undetectable. These results suggested that early apoptosis and caspase 3 activation were specific to B182. Besides, B182 induced LDH release and caspase 3 activation in CaCo-2 and HCT116 cells. Heat-treated B182 and diffusible products failed to induce this phenotype. Epithelial cells treatment with cytochalasin D caused the inhibition of B182 internalisation and caspase 3 activation. These results showed that this cell death required active S. Heidelberg B182 protein synthesis and bacterial internalisation. However sipB and sopB, usually involved in apoptosis induced by Salmonella were not overexpressed in B182, contrary to fimA and fliC. Comparative genome analysis showed numerous mutations as in rpoS which would be more investigated. The role of the hypermutator phenotype might be suspected to be implicated in these specific features. This result expands our knowledge about strong mutators frequently found in bacterial organisms isolated from clinical specimens.


Assuntos
Apoptose , Caspase 2/metabolismo , Caspase 3/metabolismo , Cisteína Endopeptidases/metabolismo , Interações Hospedeiro-Patógeno , Infecções por Salmonella/microbiologia , Salmonella/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Células CACO-2 , Caspase 9/metabolismo , Ativação Enzimática , Células Epiteliais/microbiologia , Células HeLa , Humanos , Dados de Sequência Molecular , Mutação , Fenótipo , Salmonella/classificação , Salmonella/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA