Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (200)2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37870360

RESUMO

The nanoscale imaging of biological specimens can improve the understanding of disease pathogenesis. In recent years, expansion microscopy (ExM) has been demonstrated to be an effective and low-cost alternative to optical super-resolution microscopy. However, it has been limited by the need for specific and often custom anchoring agents to retain different biomolecule classes within the gel and by difficulties with expanding standard clinical sample formats, such as formalin-fixed paraffin-embedded tissue, especially if larger expansion factors or preserved protein epitopes are desired. Here, we describe Magnify, a new ExM method for robust expansion up to 11-fold in a wide array of tissue types. By using methacrolein as the chemical anchor between the tissue and gel, Magnify retains multiple biomolecules, such as proteins, lipids, and nucleic acids, within the gel, thus allowing the broad nanoscale imaging of tissues on conventional optical microscopes. This protocol describes best practices to ensure robust and crack-free tissue expansion, as well as tips for handling and imaging highly expanded gels.


Assuntos
Microscopia , Ácidos Nucleicos , Microscopia/métodos , Proteínas , Géis
2.
Adv Sci (Weinh) ; 10(30): e2302249, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37658522

RESUMO

Super-resolution optical imaging tools are crucial in microbiology to understand the complex structures and behavior of microorganisms such as bacteria, fungi, and viruses. However, the capabilities of these tools, particularly when it comes to imaging pathogens and infected tissues, remain limited. MicroMagnify (µMagnify) is developed, a nanoscale multiplexed imaging method for pathogens and infected tissues that are derived from an expansion microscopy technique with a universal biomolecular anchor. The combination of heat denaturation and enzyme cocktails essential is found for robust cell wall digestion and expansion of microbial cells and infected tissues without distortion. µMagnify efficiently retains biomolecules suitable for high-plex fluorescence imaging with nanoscale precision. It demonstrates up to eightfold expansion with µMagnify on a broad range of pathogen-containing specimens, including bacterial and fungal biofilms, infected culture cells, fungus-infected mouse tone, and formalin-fixed paraffin-embedded human cornea infected by various pathogens. Additionally, an associated virtual reality tool is developed to facilitate the visualization and navigation of complex 3D images generated by this method in an immersive environment allowing collaborative exploration among researchers worldwide. µMagnify is a valuable imaging platform for studying how microbes interact with their host systems and enables the development of new diagnosis strategies against infectious diseases.


Assuntos
Bactérias , Microscopia , Humanos , Animais , Camundongos , Microscopia/métodos , Imagem Óptica
6.
Nat Biotechnol ; 41(6): 858-869, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36593399

RESUMO

Expansion microscopy enables nanoimaging with conventional microscopes by physically and isotropically magnifying preserved biological specimens embedded in a crosslinked water-swellable hydrogel. Current expansion microscopy protocols require prior treatment with reactive anchoring chemicals to link specific labels and biomolecule classes to the gel. We describe a strategy called Magnify, which uses a mechanically sturdy gel that retains nucleic acids, proteins and lipids without the need for a separate anchoring step. Magnify expands biological specimens up to 11 times and facilitates imaging of cells and tissues with effectively around 25-nm resolution using a diffraction-limited objective lens of about 280 nm on conventional optical microscopes or with around 15 nm effective resolution if combined with super-resolution optical fluctuation imaging. We demonstrate Magnify on a broad range of biological specimens, providing insight into nanoscopic subcellular structures, including synaptic proteins from mouse brain, podocyte foot processes in formalin-fixed paraffin-embedded human kidney and defects in cilia and basal bodies in drug-treated human lung organoids.


Assuntos
Rim , Microscopia , Camundongos , Animais , Humanos , Microscopia/métodos
7.
Neurobiol Dis ; 154: 105362, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33813047

RESUMO

One of the biggest unsolved questions in neuroscience is how molecules and neuronal circuitry create behaviors, and how their misregulation or dysfunction results in neurological disease. Light microscopy is a vital tool for the study of neural molecules and circuits. However, the fundamental optical diffraction limit precludes the use of conventional light microscopy for sufficient characterization of critical signaling compartments and nanoscopic organizations of synapse-associated molecules. We have witnessed rapid development of super-resolution microscopy methods that circumvent the resolution limit by controlling the number of emitting molecules in specific imaging volumes and allow highly resolved imaging in the 10-100 nm range. Most recently, Expansion Microscopy (ExM) emerged as an alternative solution to overcome the diffraction limit by physically magnifying biological specimens, including nervous systems. Here, we discuss how ExM works in general and currently available ExM methods. We then review ExM imaging in a wide range of nervous systems, including Caenorhabditis elegans, Drosophila, zebrafish, mouse, and human, and their applications to synaptic imaging, neuronal tracing, and the study of neurological disease. Finally, we provide our prospects for expansion microscopy as a powerful nanoscale imaging tool in the neurosciences.


Assuntos
Encéfalo/citologia , Encéfalo/metabolismo , Microscopia de Fluorescência/instrumentação , Nanotecnologia/instrumentação , Neurociências/instrumentação , Sinapses/metabolismo , Animais , Química Encefálica/fisiologia , Humanos , Microscopia/instrumentação , Microscopia/métodos , Microscopia/tendências , Microscopia de Fluorescência/métodos , Microscopia de Fluorescência/tendências , Nanotecnologia/métodos , Nanotecnologia/tendências , Neurociências/tendências , Sinapses/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA