Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 232: 115370, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37163830

RESUMO

The COVID-19 pandemic had devastating effects throughout the world, producing a severe crisis in the health systems and in the economy of a long list of countries, even developed ones. Therefore, highly sensitive and selective analytical bioplatforms that allow the descentralized and fast detection of the severe acute respiratory síndrome coronavirus 2 (SARS-CoV-2), are extremely necessary. Since 2020, several reviews have been published, most of them focused on the different strategies to detect the SARS-CoV-2, either from RNA, viral proteins or host antibodies produced due to the presence of the virus. In this review, the most relevant biosensors for the detection of SARS-CoV-2 RNA are particularly addressed, with special emphasis on the discussion of the biorecognition layers and the different schemes for transducing the hybridization event.


Assuntos
Técnicas Biossensoriais , COVID-19 , Ácidos Nucleicos , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , RNA Viral/genética , Pandemias
2.
Micromachines (Basel) ; 13(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36422406

RESUMO

We report the advantages of glassy carbon electrodes (GCE) modified with multi-walled carbon nanotubes (MWCNTs) non-covalently functionalized with polyarginine (PolyArg) for the adsorption and electrooxidation of different DNAs and the analytical applications of the resulting platform. The presence of the carbon nanostructures, and mainly the charge of the PolyArg that supports them, facilitates the adsorption of calf-thymus and salmon sperm double-stranded DNAs and produces an important decrease in the overvoltages for the oxidation of guanine and adenine residues and a significant enhancement in the associated currents. As a proof-of-concept of possible GCE/MWCNTs-PolyArg biosensing applications, we develop an impedimetric genosensor for the quantification of microRNA-21 at femtomolar levels, using GCE/MWCNTs-PolyArg as a platform for immobilizing the DNA probe, with a detection limit of 3fM, a sensitivity of 1.544 × 103 Ω M-1, and a successful application in enriched biological fluids.

3.
J Pharm Biomed Anal ; 191: 113526, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32892085

RESUMO

We are reporting a new strategy for preparing carbon nanotubes (CNTs)-based hydrogen peroxide and glucose amperometric sensors by taking advantage of the dual role of bathocuproine disulfonic acid (BCS) as dispersing agent of multi-walled carbon nanotubes (MWCNTs) and as ligand for the preconcentration of Cu(II). The platform was obtained by casting glassy carbon electrodes (GCE) with the dispersion of MWCNTs in BCS (MWCNTs-BCS) followed by the preconcentration of Cu(II) by surface complex formation at open circuit potential (GCE/MWCNTs-BCS/Cu). The resulting electrode was used for the sensitive amperometric quantification of hydrogen peroxide at 0.400 V catalyzed by the preconcentrated copper, with a linear range between 5.0 × 10-7 and 7.4 × 10-6 M, a sensitivity of 24.3 mA.M-1, and a detection limit of 0.2 µM. The adsorption of GOx at GCE/MWCNTs-BCS/Cu followed by the immobilization of Nafion (Naf), allowed the construction of a sensitive and selective amperometric glucose biosensor with a linear range between 5.0 × 10-6 M and 4.9 × 10-4 M, a sensitivity of (477 ± 3) µA.M-1 and a detection limit of 2 µM. The proposed (bio)sensors were successfully used for the quantification of hydrogen peroxide in enriched milk samples and glucose in milk and commercial beverages without any pretreatment.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Cobre , Técnicas Eletroquímicas , Eletrodos , Glucose , Peróxido de Hidrogênio , Ligantes , Fenantrolinas
4.
J Pharm Biomed Anal ; 189: 113478, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32768875

RESUMO

MicroRNAs (miRNAs) are non-coding regulatory RNAs that play an important role in RNA silencing and post-transcriptional gene expression regulation. Since their dysregulation has been associated with Alzheimer disease, cardiovascular diseases and different types of cancer, among others, miRNAs can be used as biomarkers for early diagnosis and prognosis of these diseases. The methods commonly used to quantify miRNAs are, in general, complex, costly, with limited application for point-of-care devices or resource-limited facilities. Electrochemical biosensors, mainly those based on nanomaterials, have emerged as a promising alternative to the conventional miRNA detection methods and have paved the way to the development of sensitive, fast, and low-cost detection systems. This review is focused on the most relevant contributions performed in the field of electrochemical miRNAs biosensors between 2017 and the beginning of 2020. The main contribution of this article is the critical discussion of the different amplification strategies and the comparative analysis between amplified and non-amplified miRNA electrochemical biosensing and between the different amplification schemes. Particular emphasis was given to the importance of the nanostructures, enzymes, labelling molecules, and special sequences of nucleic acids or analogues on the organization of the different bioanalytical platforms, the transduction of the hybridization event and the generation the analytical signal.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Nanoestruturas , Técnicas Eletroquímicas , MicroRNAs/genética , Hibridização de Ácido Nucleico
5.
Anal Bioanal Chem ; 412(21): 5089-5096, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32009193

RESUMO

This work reports the successful non-covalent functionalization of multi-walled carbon nanotubes (MWCNTs) with bathocuproinedisulfonic acid (BCS) and the analytical application of the resulting dispersion (MWCNTs-BCS) to develop an electrochemical sensor for Cu(II) quantification. The sensor was obtained by casting glassy carbon electrodes (GCEs) with MWCNTs-BCS. The sensing mechanism was based on the open circuit preconcentration of Cu(II) at the electrode surface by complexation of Cu(II) through the phenanthroline ring nitrogen of the BCS that supports the MWCNTs, the reduction of the preconcentrated Cu(II), and final differential pulse voltammetry-anodic stripping in 0.020 M acetate buffer, pH 5.00. The sensitivity of the sensor was (2.73 ± 0.08) µA µM-1, with a linear range between 5.0 × 10-7 M and 6.0 × 10-6 M, a detection limit of 0.15 µM (9.5 µg L-1), and reproducibility of 6.2% using the same dispersion and 7.1% using three different MWCNTs-BCS dispersions. The quantification of Cu(II) was highly selective even in the presence of As3+, Cr3+, Cd2+, Ni2+, Pb2+, Co2+, Zn2+, Fe2+, Hg2+, Rh, Ir, and Ru. The proposed sensor was successfully used for quantifying Cu(II) in tap water. Graphical abstract.

6.
Biosens Bioelectron ; 148: 111764, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31707325

RESUMO

We are reporting an original supramolecular architecture based on a rationally designed new nanohybrid with enhanced peroxidase-like activity and site-specific biorecognition properties using avidin-functionalized multi-walled carbon nanotubes (MWCNTs-Av) and Ru nanoparticles (RuNPs). The nanohybrid-electrochemical interface was obtained by drop-coating of MWCNTs-Av dispersion at glassy carbon electrodes (GCE) followed by solvent evaporation and further electrodeposition of RuNPs (50 ppm RuCl2 for 15 s at -0.600 V). The simultaneous presence of MWCNTs and RuNPs produces a synergic effect on the non-enzymatic catatalytic reduction of H2O2 and allows the quantification of H2O2 in a wide linear range (from 5.0 × 10-7 M to 1.75 × 10-3 M) with a low limit of detection (65 nM). The avidin residues present in MWCNTs-Av/RuNPs hybrid nanomaterial allowed the anchoring by bioaffinity of biotinylated glucose oxidase (biot-GOx) as proof-of-concept of the analytical application of MWCNTs-Av platform for biosensors development. The resulting nanoarchitecture behaves as a bienzymatic-like glucose biosensor with a competitive analytical performance: linear range between 2.0 × 10-5 M and 1.23 × 10-3 M, sensitivity of (0.343 ±â€¯0.002) µA mM-1 or (2.60 ±â€¯0.02) µA mM-1 cm-2, detection limit of 3.3 µM, and reproducibility of 5.2% obtained with five different GCE/MWCNTs-Av/RuNPs/biot-GOx bioplatforms prepared the same day using the same MWCNTs-Av dispersion, and 9.1% obtained with nine biosensors prepared in different days with nine different MWCNTs-Av dispersions. The average concentrations of glucose in Gatorade®, Red bull® and Pepsi® with the biosensor demonstrated excellent agreement with those reported in the commercial beverages.


Assuntos
Avidina/química , Técnicas Biossensoriais/métodos , Nanopartículas/química , Nanotubos de Carbono/química , Rutênio/química , Aspergillus niger/enzimologia , Bebidas/análise , Materiais Biomiméticos/química , Biotinilação , Catálise , Técnicas Eletroquímicas/métodos , Glucose/análise , Glucose Oxidase/química , Peróxido de Hidrogênio/análise , Limite de Detecção , Nanopartículas/ultraestrutura , Nanotubos de Carbono/ultraestrutura , Peroxidase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA