Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Clin Med ; 13(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38892739

RESUMO

Background: As adipose tissue-derived mesenchymal stem cells are becoming the tool of choice for many clinical applications; standardized cryopreservation protocols are necessary to deliver high-quality samples. For this purpose, the cryopreservation and thawing of native adipose tissue under GMP conditions could represent an extremely useful and powerful tool for the direct reinfusion of the tissue, and consequently, of its stromal vascular fraction. Methods: In this study, 19 samples of adipose tissue were cryopreserved and characterized before and after storage in liquid nitrogen vapors. Of these 19 samples, 14 were processed in research and 5 in a GMP-compliant environment. Storage with and without cryopreservation medium was also evaluated. After one week to three months of storage, samples were thawed, washed, enzymatically digested, and characterized with flow cytometry. Results: The results show that there is a loss of nearly 50% of total nucleated cells during the cryopreservation/thawing process. Non-GMP and GMP samples are comparable for all parameters analyzed. This study also allowed us to exclude the cryopreservation of adipose tissue without any cryopreservation medium. Conclusions: The data shown in this work are consistent with the idea that native adipose tissue, if properly processed and controlled, could be a useful source of cells for regenerative medicine, keeping in mind that there is a clear difference in the quality between fresh and thawed samples.

2.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255788

RESUMO

The identification of markers for early diagnosis, prognosis, and improvement of therapeutic options represents an unmet clinical need to increase survival in Non-Small Cell Lung Cancer (NSCLC), a neoplasm still characterized by very high incidence and mortality. Here, we investigated whether proline dehydrogenase (PRODH), a mitochondrial flavoenzyme catalyzing the key step in proline degradation, played a role in NSCLC tumorigenesis. PRODH expression was investigated by immunohistochemistry; digital PCR, quantitative PCR, immunoblotting, measurement of reactive oxygen species (ROS), and functional cellular assays were carried out. PRODH expression was found in the majority of lung adenocarcinomas (ADCs). Patients with PRODH-positive tumors had better cancer-free specific and overall survival compared to those with negative tumors. Ectopic modulation of PRODH expression in NCI-H1299 and the other tested lung ADC cell lines decreased cell survival. Moreover, cell proliferation curves showed delayed growth in NCI-H1299, Calu-6 and A549 cell lines when PRODH-expressing clones were compared to control clones. The 3D growth in soft agar was also impaired in the presence of PRODH. PRODH increased reactive oxygen species production and induced cellular senescence in the NCI-H1299 cell line. This study supports a role of PRODH in decreasing survival and growth of lung ADC cells by inducing cellular senescence.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Sobrevivência Celular/genética , Prolina Oxidase/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Espécies Reativas de Oxigênio , Neoplasias Pulmonares/genética , Adenocarcinoma de Pulmão/genética , Senescência Celular/genética
3.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895050

RESUMO

Neutrophils represent the primary defense against microbial threats playing a pivotal role in maintaining tissue homeostasis. This review examines the multifaceted involvement of neutrophils in periodontitis, a chronic inflammatory condition affecting the supporting structures of teeth summarizing the contribution of neutrophil dysfunction in periodontitis and periodontal-related comorbidities. Periodontitis, a pathological condition promoted by dysbiosis of the oral microbiota, is characterized by the chronic inflammation of the gingiva and subsequent tissue destruction. Neutrophils are among the first immune cells recruited to the site of infection, releasing antimicrobial peptides, enzymes, and reactive oxygen species to eliminate pathogens. The persistent inflammatory state in periodontitis can lead to aberrant neutrophil activation and a sustained release of proinflammatory mediators, finally resulting in tissue damage, bone resorption, and disease progression. Growing evidence now points to the correlation between periodontitis and systemic comorbidities. Indeed, the release of inflammatory mediators, immune complexes, and oxidative stress by neutrophils, bridge the gap between local and systemic immunity, thus highlighting neutrophils as key players in linking periodontal inflammation to chronic conditions, including cardiovascular diseases, diabetes mellitus, and rheumatoid arthritis. This review underscores the crucial role of neutrophils in the pathogenesis of periodontitis and the complex link between neutrophil dysfunction, local inflammation, and systemic comorbidities. A comprehensive understanding of neutrophil contribution to periodontitis development and their impact on periodontal comorbidities holds significant implications for the management of oral health. Furthermore, it highlights the need for the development of novel approaches aimed at limiting the persistent recruitment and activation of neutrophils, also reducing the impact of periodontal inflammation on broader health contexts, offering promising avenues for improved disease management and patient care.


Assuntos
Doenças Cardiovasculares , Periodontite , Humanos , Neutrófilos , Doenças Cardiovasculares/etiologia , Periodontite/complicações , Inflamação/complicações , Doença Crônica
4.
Nanomaterials (Basel) ; 13(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37686988

RESUMO

Among all strategies directed at developing new tools to support re-vascularization of damaged tissues, the use of pro-angiogenic soluble factors, derived from mesenchymal stem cells (MSCs), appears a promising approach for regenerative medicine. Here, we compared the feasibility of two devices, generated by coupling soluble factors of human dental pulp mesenchymal stem cells (DPSCs), with a nanostructured scaffold, to support angiogenesis once transplanted in mice. DPSCs were obtained from impacted wisdom tooth removal, usually considered surgical waste material. After 28 days, we verified the presence of active blood vessels inside the scaffold through optical and scansion electron microscopy. The mRNA expression of surface antigens related to macrophage polarization (CD68, CD80, CD86, CD163, CD206), as well as pro-angiogenic markers (CD31, CD34, CD105, Angpt1, Angpt2, CDH5) was evaluated by real-time PCR. Our results demonstrate the capability of DPSC-scaffold and DPSC soluble factors-scaffold to support angiogenesis, similarly to adipose stem cells, whereas the absence of blood vessels was found in the scaffold grafted alone. Our results provide evidence that DPSC-conditioned medium can be proposed as a cell-free preparation able to support angiogenesis, thus, providing a relevant tool to overcome the issues and restrictions associated with the use of cells.

5.
Front Endocrinol (Lausanne) ; 14: 1145811, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124743

RESUMO

Introduction: Methimazole (MMI) represents the conventional therapeutic agent for Graves' disease (GD) hyperthyroidism, but MMI efficacy is limited since it marginally affects the underlying autoimmune process. In a previous study, we randomly assigned 42 newly diagnosed GD patients with insufficient vitamin D (VitD) and selenium (Se) levels to treatment with MMI alone (standard) or combined with selenomethionine and cholecalciferol (intervention) and observed a prompter resolution of hyperthyroidism in the intervention group. Methods: In the present study, we aimed to explore changes in peripheral T regulatory (Treg) and circulating natural killer (NK) cell frequency, circulating NK cell subset distribution and function, during treatment. Results: At baseline, circulating total CD3-CD56+NK cells and CD56bright NK cells were significantly higher in GD patients than in healthy controls (HC) (15.7 ± 9.6% vs 9.9 ± 5.6%, p=0.001; 12.2 ± 10.3% vs 7.3 ± 4.1%, p=0.02, respectively); no differences emerged in Treg cell frequency. Frequencies of total NK cells and CD56bright NK cells expressing the activation marker CD69 were significantly higher in GD patients than in HC, while total NK cells and CD56dim NK cells expressing CD161 (inhibitory receptor) were significantly lower. When co-cultured with the K562 target cell, NK cells from GD patients had a significantly lower degranulation ability compared to HC (p<0.001). Following 6 months of treatment, NK cells decreased in both the intervention and MMI-alone groups, but significantly more in the intervention group (total NK: -10.3%, CI 95% -15.8; -4.8% vs -3.6%, CI 95% -9; 1.8%, p=0.09 and CD56bright NK cells: -6.5%, CI 95% -10.1; -3 vs -0.9%, CI 95% -4.4; 2%, p=0.03). Compared to baseline, CD69+ NK cells significantly decreased, while degranulation ability slightly improved, although no differences emerged between the two treatment groups. Compared to baseline, Treg cell frequency increased exclusively in the intervention group (+1.1%, CI 95% 0.4; 1.7%). Discussion: This pilot study suggested that VitD and Se supplementation, in GD patients receiving MMI treatment, modulates Treg and NK cell frequency, favoring a more pronounced reduction of NK cells and the increase of Treg cells, compared to MMI alone. Even if further studies are needed, it is possible to speculate that this immunomodulatory action might have facilitated the prompter and better control of hyperthyroidism in the supplemented group observed in the previous study.


Assuntos
Doença de Graves , Hipertireoidismo , Selênio , Humanos , Metimazol/uso terapêutico , Antitireóideos/uso terapêutico , Selênio/uso terapêutico , Vitamina D/uso terapêutico , Projetos Piloto , Doença de Graves/tratamento farmacológico , Hipertireoidismo/tratamento farmacológico , Vitaminas/uso terapêutico , Suplementos Nutricionais
6.
Cell Death Discov ; 9(1): 174, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221171

RESUMO

Tissue regeneration or healing both require efficient vascularization within a tissue-damaged area. Based on this concept, a remarkable number of strategies, aimed at developing new tools to support re-vascularization of damaged tissue have emerged. Among the strategies proposed, the use of pro-angiogenic soluble factors, as a cell-free tool, appears as a promising approach, able to overcome the issues concerning the direct use of cells for regenerative medicine therapy. Here, we compared the effectiveness of adipose mesenchymal stem cells (ASCs), use as cell suspension, ASC protein extract or ASC-conditioned-medium (i.e., soluble factors), combined with collagenic scaffold, in supporting in vivo angiogenesis. We also tested the capability of hypoxia in increasing the efficiency of ASC to promote angiogenesis, via soluble factors, both in vivo and in vitro. In vivo studies were performed using the Integra® Flowable Wound Matrix, and the Ultimatrix in sponge assay. Flow cytometry was used to characterize the scaffold- and sponge-infiltrating cells. Real-time PCR was used to evaluate the expression of pro-angiogenic factors by stimulating Human Umbilical-Vein Endothelial Cells with ASC-conditioned media, obtained in hypoxic and normoxic conditions. We found that, in vivo, ACS-conditioned media can support angiogenesis similar to ASCs and ASC protein extract. Also, we observed that hypoxia increases the pro-angiogenic activities of ASC-conditioned media, compared to normoxia, by generating a secretome enriched in pro-angiogenic soluble factors, with bFGF, Adiponectine, ENA78, GRO, GRO-a, and ICAM1-3, as most regulated factors. Finally, ASC-conditioned media, produced in hypoxic condition, induce the expression of pro-angiogenic molecules in HUVECs. Our results provide evidence that ASC-conditioned-medium can be proposed as a cell-free preparation able to support angiogenesis, thus providing a relevant tool to overcome the issues and restrictions associated with the use of cells.

7.
Front Oncol ; 12: 998274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531071

RESUMO

High-dose standard-of-care chemotherapy is the only option for triple-negative breast cancer (TNBC) patients, which eventually die due to metastatic tumors. Recently, metronomic chemotherapy (mCHT) showed advantages in treating TNBCs leading us to investigate the anti-metastatic and anti-angiogenic potential of metronomic 5-Fluorouracil plus Vinorelbine (5-FU+VNR) on endothelial cells (ECs) and TNBCs in comparison to standard treatment (STD). We found that 10-fold lower doses of 5-FU+VNR given mCHT vs. STD inhibits cell proliferation and survival of ECs and TNBC cells. Both schedules strongly affect ECs migration and invasion, but in TNBC cells mCHT is significantly more effective than STD in impairing cell migration and invasion. The two treatments disrupt FAK/VEGFR/VEGF signaling in both ECs and TNBC cells. mCHT, and to a much lesser extent STD treatment, induces apoptosis in ECs, whereas it switches the route of cell death from apoptosis (as induced by STD) to autophagy in TNBC cells. mCHT-treated TNBCs-derived conditioned medium also strongly affects ECs' migration, modulates different angiogenesis-associated proteins, and hampers angiogenesis in matrix sponge in vivo. In conclusion, mCHT administration of 5-FU+VNR is more effective than STD schedule in controlling cell proliferation/survival and migration/invasion of both ECs and TNBC cells and has a strong anti-angiogenic effect. Our data suggest that the stabilization of tumor growth observed in TNBC patients treated with mCHT therapy schedule is likely due not only to direct cytotoxic effects but also to anti-metastatic and anti-angiogenic effects.

8.
Explor Target Antitumor Ther ; 3(5): 694-718, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338516

RESUMO

Prostate cancer (PCa) accounts as the most common non-cutaneous disease affecting males, and as the first cancer, for incidence, in male. With the introduction of the concept of immunoscore, PCa has been classified as a cold tumor, thus driving the attention in the development of strategies aimed at blocking the infiltration/activation of immunosuppressive cells, while favoring the infiltration/activation of anti-tumor immune cells. Even if immunotherapy has revolutionized the approaches to cancer therapy, there is still a window failure, due to the immune cell plasticity within PCa, that can acquire pro-tumor features, subsequent to the tumor microenvironment (TME) capability to polarize them. This review discussed selected relevant soluble factors [transforming growth factor-beta (TGFß), interleukin-6 (IL-6), IL-10, IL-23] and cellular components of the innate immunity, as drivers of tumor progression, immunosuppression, and angiogenesis within the PCa-TME.

9.
Front Endocrinol (Lausanne) ; 13: 886451, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784564

RESUMO

Prompt and stable control of hyperthyroidism is fundamental to avoid the detrimental effects of thyroid hormone excess, and antithyroid drugs, mainly methimazole (MMI), represent the first-line treatment for Graves' disease (GD) hyperthyroidism. Decreased serum concentrations of selenium (Se) and calcifediol (25(OH)D, VitD) have been reported in newly diagnosed GD patients in observational studies. Low Se levels might exacerbate oxidative stress by compromising the antioxidant machinery's response to reactive oxygen species, and low VitD levels might hamper the anti-inflammatory immune response. We performed a randomized controlled clinical trial (EudraCT 2017-00505011) to investigate whether Se and cholecalciferol (VitD) addition to MMI is associated with a prompter control of hyperthyroidism. Forty-two consecutive patients with newly-onset GD and marginal/insufficient Se and VitD levels were randomly assigned to treatment with either MMI monotherapy or MMI combined with Se and VitD. Se treatment was withdrawn after 180 days, while the other treatments were continued. Combination therapy resulted in a significantly greater reduction in serum FT4 concentration at 45 days (-37.9 pg/ml, CI 95%, -43.7 to -32.2 pg/ml) and 180 days (-36.5 pg/ml, CI 95%, -42 to -30.9 pg/ml) compared to MMI monotherapy (respectively: -25.7 pg/ml, CI 95%, -31.6 to -19.7 pg/ml and -22.9 pg/ml, CI 95%, -28 to -17.3 pg/ml, p 0.002). Data at 270 days confirmed this trend (-37.8 pg/ml, CI 95%, -43.6 to -32.1 pg/ml vs -24.4 pg/ml, CI 95%, -30.3 to -18.4 pg/ml). The quality of life (QoL) score was investigated by the validated "Thyroid-related Patient-Reported Outcome" questionnaire (ThyPRO). ThyPRO composite score showed a greater improvement in the intervention group at 45 days (-14.6, CI 95%, -18.8 to -10.4), 180 (-9, CI 95%, -13.9 to -4.2) and 270 days (-14.3, CI 95%, -19.5 to -9.1) compared to MMI group (respectively, -5.2, CI 95%, -9.5 to -1; -5.4, CI 95%, -10.6 to -0.2 and -3.5, CI 95%, -9 to -2.1, p 0-6 months and 6-9 months <0.05). Our results suggest that reaching optimal Se and VitD levels increases the early efficacy of MMI treatment when Se and VitD levels are suboptimal.


Assuntos
Doença de Graves , Hipertireoidismo , Selênio , Suplementos Nutricionais , Humanos , Metimazol/uso terapêutico , Qualidade de Vida , Selênio/uso terapêutico , Vitamina D/uso terapêutico , Vitaminas/uso terapêutico
11.
Front Immunol ; 13: 798813, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237261

RESUMO

A successful vaccination would represent the most efficient means to control the pandemic of Coronavirus Disease-19 (COVID-19) that led to millions of deaths worldwide. Novel mRNA-based vaccines confer protective immunity against SARS-CoV-2, but whether immunity is immediately effective and how long it will remain in recipients are uncertain. We sought to assess the effectiveness of a two-dose regimen since the boosts are often delayed concerning the recommended intervals. Methods: A longitudinal cohort of healthcare workers (HCW, N = 46; 30.4% men; 69.6% women; mean age 36.05 ± 2.2 years) with no SARS-CoV-2 infection as documented by negative polymerase chain reaction was immunophenotyped in PBMC once a week for 4 weeks from the prime immunization (Pfizer mRNA BNT162b2) and had received 2 doses, to study the kinetic response. Results: We identified three risk groups to develop SARS-CoV-2 infection IgG+-based (late responders, R-; early responders, R+; pauci responders, PR). In all receipts, amplification of B cells and NK cells, including IL4-producing B cells and IL4-producing CD8+ T cells, is early stimulated by the vaccine. After the boost, we observed a growing increase of NK cells but a resistance of T cells, IFNγ-producing CD4+T cells, and IFNγ-producing NK cells. Also, hematologic parameters decline until the boost. The positive association of IFNγ-producing NK with IFNγ-producing CD4+T cells by the multiple mixed-effect model, adjusted for confounders (p = 0.036) as well as the correlation matrix (r = 0.6, p < 0.01), suggests a relationship between these two subsets of lymphocytes. Conclusions: These findings introduce several concerns about policy delay in vaccination: based on immunological protection, B cells and the persistent increase of NK cells during 2 doses of the mRNA-based vaccine could provide further immune protection against the virus, while CD8+ T cells increased slightly only in the R+ and PR groups.


Assuntos
Vacina BNT162/imunologia , Imunização , Interferon gama/imunologia , Células Matadoras Naturais/imunologia , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Adulto , Linfócitos B/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Feminino , Humanos , Interleucina-4/imunologia , Leucócitos Mononucleares/imunologia , Subpopulações de Linfócitos/imunologia , Masculino , Equilíbrio Th1-Th2
12.
JMIR Res Protoc ; 11(1): e29892, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34854818

RESUMO

BACKGROUND: The novel coronavirus has a high mortality rate (over 1% for patients older than 50 years). This can only be partially ascribed to other comorbidities. A possible explanation is a factor that assures a prompt response to SARS-CoV-2 in younger people, independent from the novelty of the virus itself. A factor is believed to stimulate the immune system and provide immunity against more antigens. The only external stimulation received by healthy people is vaccination (eg, the diphtheria, tetanus, and pertussis [DTP] vaccine). One hypothesis is that vaccination helps develop specific immunity but generates sprouting immunity against antigens in transit. The underlying immunological phenomena are the "bystander effect" and "trained immunity." The developed immunity gives protection for years until it naturally fades out. After the fifth decade of life, the immune system is almost incompetent when a viral infection occurs, and thus, at this stage, the novel coronavirus can enter the body and cause acute respiratory distress syndrome. OBJECTIVE: The initial aim is to demonstrate that blood monocytes and natural killer cells show overpowering hyperactivity, while CD4+ and CD8+ T cells experience impediments to their defensive functions in patients with severe SARS-CoV-2 infection. The secondary objectives are to correlate clinical data and vaccination history with laboratory immune patterns in order to identify protective factors. Subsequently, we are also interested in characterizing the phenotypes and state of the degree of activation of peripheral blood mononuclear cells, including monocytes, natural killer cells, and CD4+ and CD8+ T cells, in healthy subjects vaccinated with the Pfizer vaccine. METHODS: Data will be collected using the following 3 approaches: (1) an experimental analysis to study the innate immune response and to identify genetic profiles; (2) an epidemiological analysis to identify the patients' vaccination history; and (3) a clinical analysis to detect the immunological profile. RESULTS: The protocol was approved by the Ethics Committee on April 16, 2020, and the study started on April 27, 2020. As of February 2021, enrollment has been completed. Immunological analysis is ongoing, and we expect to complete this analysis by December 2022. CONCLUSIONS: We will recognize different populations of patients, each one with a specific immunological pattern in terms of cytokines, soluble factor serum levels, and immune cell activity. Anamnestic data, such as preceding vaccinations and comorbidities, biochemical findings like lymphocyte immunophenotyping, and pre-existing persistent cytomegalovirus infection, allow depicting the risk profile of severe COVID-19. Proof of the roles of these immunological phenomena in the development of COVID-19 can be the basis for the implementation of therapeutic immunomodulatory treatments. TRIAL REGISTRATION: ClinicalTrials.gov NCT04375176; https://clinicaltrials.gov/ct2/show/NCT04375176. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/29892.

14.
Vaccines (Basel) ; 9(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34960234

RESUMO

The tumor immune microenvironment (TIME) has largely been reported to cooperate on tumor onset and progression, as a consequence of the phenotype/functional plasticity and adaptation capabilities of tumor-infiltrating and tumor-associated immune cells. Immune cells within the tumor micro (tissue-local) and macro (peripheral blood) environment closely interact by cell-to-cell contact and/or via soluble factors, also generating a tumor-permissive soil. These dangerous liaisons have been investigated for pillars of tumor immunology, such as tumor associated macrophages and T cell subsets. Here, we reviewed and discussed the contribution of selected innate immunity effector cells, namely neutrophils and natural killer cells, as "soloists" or by their "dangerous liaisons", in favoring tumor progression by dissecting the cellular and molecular mechanisms involved.

15.
Cancers (Basel) ; 13(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34638439

RESUMO

Natural Killer (NK) cells have been found to be anergic, exhausted and pro-angiogenic in cancers. NK cell from healthy donors, exposed to TGFß, acquire the CD56brightCD9+CD49a+ decidual-like-phenotype, together with decreased levels of NKG2D activation marker, increased levels of TIM-3 exhaustion marker, similar to cancer-associated NK cells. Tissue inhibitors of metalloproteases (TIMPs) exert dual roles in cancer. The role of TIMPs in modulating immune cells is a very novel concept, and the present is the first report studying their ability to contrast TGFß action on NK cells. Here, we investigated the effects of TIMP1 and TIMP2 recombinant proteins in hindering decidual-like markers in NK cells, generated by polarizing cytolytic NK cells with TGFß. The effects of TIMP1 or TIMP2 on NK cell surface antigens were determined by multicolor flow cytometry. We found that TIMP1 and TIMP2 were effective in interfering with TGFß induced NK cell polarization towards a decidual-like-phenotype. TIMP1 and TIMP2 counteracted the effect of TGFß in increasing the percentage of CD56bright, CD16-, CD9+ and CD49a+, and restoring normal levels for TIMP 1 and 2 also inhibited decrease levels of the activation marker NKG2D induced by TGFß and decreased the TGFß upregulated exhaustion marker TIM-3. NK cell degranulation capabilities against K562 cells were also decreased by TGFß and not by TIMP1 or TIMP2. TIMP1 treatment could partially restore degranulation marker CD107a expression. Treatment with recombinant TIMP-1 or TIMP-2 showed a trend, although not statistically significant, to decrease CD49a+ and TIM-3+ expression and increase NKG2D in peripheral blood NK cells exposed to conditioned media from colon cancer cell lines. Our results suggest a potential role of TIMPs in controlling the tumor-associated cytokine TGFß-induced NK cell polarization. Given the heterogeneity of released factors within the TME, it is clear that TGFß stimulation represents a model to prove TIMP's new properties, but it cannot be envisaged as a soloist NK cell polarizing agent. Therefore, further studies from the scientific community will help defining TIMPs immunomodulatory activities of NK cells in cancer, and their possible future diagnostic-therapeutic roles.

16.
Vaccines (Basel) ; 9(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34696286

RESUMO

Leukocytes often undergo rapid changes in cell phenotype, for example, from a resting to an activated state, which places significant metabolic demands on the cell. These rapid changes in metabolic demand need to be tightly regulated to support immune cell effector functions during the initiation and downregulation of an immune response. Prospects for implementing cancer immunotherapy also rest on the idea of optimizing the metabolic profile of immune cell effectors. Here, we examine this issue by focusing on neutrophils and NK cells as cells of increasing interest in cancer immunology and tumor immunometabolism, because they can be targeted or, in the case of NK, used as effectors in immunotherapy. In addition, neutrophils and NK cells have been shown to functionally interact. In the case of neutrophils, we also extended our interest to polymorphonuclear MDSC (PMN-MDSCs), since the granulocytic subset of MDSCs share many phenotypes and are functionally similar to pro-tumor neutrophils. Finally, we reviewed relevant strategies to target tumor metabolism, focusing on neutrophils and NK cells.

17.
Front Immunol ; 12: 798155, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095876

RESUMO

Atherosclerosis (ATS), the change in structure and function of arteries with associated lesion formation and altered blood flow, is the leading cause of cardiovascular disease, the number one killer worldwide. Beyond dyslipidemia, chronic inflammation, together with aberrant phenotype and function of cells of both the innate and adaptive immune system, are now recognized as relevant contributors to atherosclerosis onset and progression. While the role of macrophages and T cells in atherosclerosis has been addressed in several studies, Natural Killer cells (NKs) represent a poorly explored immune cell type, that deserves attention, due to NKs' emerging contribution to vascular homeostasis. Furthermore, the possibility to re-polarize the immune system has emerged as a relevant tool to design new therapies, with some succesfull exmples in the field of cancer immunotherapy. Thus, a deeper knowledge of NK cell pathophysiology in the context of atherosclerosis and atherosclerosis-associated risk factors could help developing new preventive and treatment strategies, and decipher the complex scenario/history from "the risk factors for atherosclerosis" Here, we review the current knowledge about NK cell phenotype and activities in atherosclerosis and selected atherosclerosis risk factors, namely type-2 diabetes and obesity, and discuss the related NK-cell oriented environmental signals.


Assuntos
Aterosclerose/imunologia , Diabetes Mellitus Tipo 2/imunologia , Homeostase/imunologia , Imunidade Inata/imunologia , Células Matadoras Naturais/imunologia , Obesidade/imunologia , Imunidade Adaptativa/imunologia , Animais , Movimento Celular/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Modelos Imunológicos , Fatores de Risco
18.
Artigo em Inglês | MEDLINE | ID: mdl-32765422

RESUMO

Graves' disease (GD) is a common autoimmune cause of hyperthyroidism, which is eventually related to the generation of IgG antibodies stimulating the thyrotropin receptor. Clinical manifestations of the disease reflect hyperstimulation of the gland, causing thyrocyte hyperplasia (goiter) and excessive thyroid hormone synthesis (hyperthyroidism). The above clinical manifestations are preceded by still partially unraveled pathogenic actions governed by the induction of aberrant phenotype/functions of immune cells. In this review article we investigated the potential contribution of natural killer (NK) cells, based on literature analysis, to discuss the bidirectional interplay with thyroid hormones (TH) in GD progression. We analyzed cellular and molecular NK-cell associated mechanisms potentially impacting on GD, in a view of identification of the main NK-cell subset with highest immunoregulatory role.


Assuntos
Doença de Graves/imunologia , Doença de Graves/patologia , Células Matadoras Naturais/imunologia , Animais , Humanos
19.
Int J Mol Sci ; 21(9)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354198

RESUMO

Ovarian cancer (OvCA) accounts for one of the leading causes of death from gynecologic malignancy. Despite progress in therapy improvements in OvCA, most patients develop a recurrence after first-line treatments, dependent on the tumor and non-tumor complexity/heterogeneity of the neoplasm and its surrounding tumor microenvironment (TME). The TME has gained greater attention in the design of specific therapies within the new era of immunotherapy. It is now clear that the immune contexture in OvCA, here referred as tumor immune microenvironment (TIME), acts as a crucial orchestrator of OvCA progression, thus representing a necessary target for combined therapies. Currently, several advancements of antitumor immune responses in OvCA are based on the characterization of tumor-infiltrating lymphocytes, which have been shown to correlate with a significantly improved clinical outcome. Here, we reviewed the literature on selected TIME components of OvCA, such as macrophages, neutrophils, γδ T lymphocytes, and natural killer (NK) cells; these cells can have a role in either supporting or limiting OvCA, depending on the TIME stimuli. We also reviewed and discussed the major (immune)-therapeutic approaches currently employed to target and/or potentiate macrophages, neutrophils, γδ T lymphocytes, and NK cells in the OvCA context.


Assuntos
Imunidade Inata/efeitos dos fármacos , Neoplasias Ovarianas/terapia , Microambiente Tumoral/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Terapia Baseada em Transplante de Células e Tecidos , Progressão da Doença , Feminino , Humanos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/metabolismo , Terapia de Alvo Molecular , Neoplasias Ovarianas/imunologia
20.
Nutrients ; 12(4)2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32224910

RESUMO

Several diet-derived compounds have been reported to exert antioxidant, anti-proliferative and anti-angiogenic effects in numerous cancers and could be beneficial in cancer prevention. Olive oil production involves the generation of an aqueous phase defined as olive mill wastewater (OMWW), a polluting effluent rich in soluble polyphenols. Here, we assessed the cancer preventive properties exerted by a purified extract of OMWW (A009) for its activity on lung cancer cell lines. Hydroxytyrosol, the most abundant polyphenol present in our A009 extracts, was used as reference molecule in the assays performed. Extracts from OMWW from two different olive oil cultivars were used. We found that the A009 extracts limit lung cancer cell proliferation in a dose and time dependent manner. These effects were associated with the induction of apoptosis. A009 extracts were effective in inhibiting adhesion capabilities on a fibronectin layer accompanied with a reduction in their ability to generate invasive sprouts in a Matrigel layer. The production of chemokine CXCL12 and CXCR4 receptor were reduced by treatment with the extracts. Also, A009 interfered with the production of proangiogenic and pro-inflammatory VEGF, CXCL8, and CCL2 (as detected by FACS analysis) in the lung cell lines. A009 extracts were able to decrease STAT3 phosphorylation in lung cancer cells. Our results show that A009 extracts reduced activities related to tumor cell behavior in lung cancer cell lines, suggesting that they could have a potential cancer preventive role.


Assuntos
Proliferação de Células/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Olea/química , Extratos Vegetais/farmacologia , Receptores CXCR4/metabolismo , Células A549 , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quimiocina CXCL12/metabolismo , Humanos , Extratos Vegetais/química , Polifenóis/análise , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA