Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Artigo em Inglês | MEDLINE | ID: mdl-36360891

RESUMO

The spread of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has raised major health policy questions. Direct transmission via respiratory droplets seems to be the dominant route of its transmission. However, indirect transmission via shared contact of contaminated objects may also occur. The contribution of each transmission route to epidemic spread might change during lock-down scenarios. Here, we simulate viral spread of an abstract epidemic considering both routes of transmission by use of a stochastic, agent-based SEIR model. We show that efficient contact tracing (CT) at a high level of incidence can stabilize daily cases independently of the transmission route long before effects of herd immunity become relevant. CT efficacy depends on the fraction of cases that do not show symptoms. Combining CT with lock-down scenarios that reduce agent mobility lowers the incidence for exclusive direct transmission scenarios and can even eradicate the epidemic. However, even for small fractions of indirect transmission, such lockdowns can impede CT efficacy and increase case numbers. These counterproductive effects can be reduced by applying measures that favor distancing over reduced mobility. In summary, we show that the efficacy of lock-downs depends on the transmission route. Our results point to the particular importance of hygiene measures during mobility lock-downs.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Fômites , COVID-19/prevenção & controle , Controle de Doenças Transmissíveis/métodos , Busca de Comunicante/métodos
3.
Cells ; 11(19)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36231117

RESUMO

Among the 33 human adhesion G-protein-coupled receptors (aGPCRs), a unique subfamily of GPCRs, only ADGRF4, encoding GPR115, shows an obvious skin-dominated transcriptomic profile, but its expression and function in skin is largely unknown. Here, we report that GPR115 is present in a small subset of basal and in most suprabasal, noncornified keratinocytes of the stratified epidermis, supporting epidermal transcriptomic data. In psoriatic skin, characterized by hyperproliferation and delayed differentiation, the expression of GPR115 and KRT1/10, the fundamental suprabasal keratin dimer, is delayed. The deletion of ADGRF4 in HaCaT keratinocytes grown in an organotypic mode abrogates KRT1 and reduces keratinocyte stratification, indicating a role of GPR115 in epidermal differentiation. Unexpectedly, endogenous GPR115, which is not glycosylated and is likely not proteolytically processed, localizes intracellularly along KRT1/10-positive keratin filaments in a regular pattern. Our data demonstrate a hitherto unknown function of GPR115 in the regulation of epidermal differentiation and KRT1.


Assuntos
Células Epidérmicas , Queratinócitos , Criança , Células Epidérmicas/metabolismo , Epiderme/metabolismo , Humanos , Queratina-1/genética , Queratina-1/metabolismo , Queratinócitos/metabolismo , Queratinas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
4.
Life Sci Alliance ; 5(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35487692

RESUMO

Upon aging, the function of the intestinal epithelium declines with a concomitant increase in aging-related diseases. ISCs play an important role in this process. It is known that ISC clonal dynamics follow a neutral drift model. However, it is not clear whether the drift model is still valid in aged ISCs. Tracking of clonal dynamics by clonal tracing revealed that aged crypts drift into monoclonality substantially faster than young ones. However, ISC tracing experiments, in vivo and ex vivo, implied a similar clonal expansion ability of both young and aged ISCs. Single-cell RNA sequencing for 1,920 high Lgr5 ISCs from young and aged mice revealed increased heterogeneity among subgroups of aged ISCs. Genes associated with cell adhesion were down-regulated in aged ISCs. ISCs of aged mice indeed show weaker adhesion to the matrix. Simulations applying a single cell-based model of the small intestinal crypt demonstrated an accelerated clonal drift at reduced adhesion strength, implying a central role for reduced adhesion for affecting clonal dynamics upon aging.


Assuntos
Intestinos , Células-Tronco , Animais , Células Cultivadas , Íleo , Mucosa Intestinal/metabolismo , Camundongos , Células-Tronco/metabolismo
5.
Front Oncol ; 9: 1172, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31750255

RESUMO

Background: Activation of telomere maintenance mechanisms (TMMs) is a hallmark of most cancers, and is required to prevent genome instability and to establish cellular immortality through reconstitution of capping of chromosome ends. TMM depends on the cancer type. Comparative studies linking tumor biology and TMM have potential impact for evaluating cancer onset and development. Methods: We have studied alterations of telomere length, their sequence composition and transcriptional regulation in mismatch repair deficient colorectal cancers arising in Lynch syndrome (LS-CRC) and microsatellite instable (MSI) sporadic CRC (MSI s-CRC), and for comparison, in microsatellite stable (MSS) s-CRC and in benign colon mucosa. Our study applied bioinformatics analysis of whole genome DNA and RNA sequencing data and a pathway model to study telomere length alterations and the potential effect of the "classical" telomerase (TEL-) and alternative (ALT-) TMM using transcriptomic signatures. Results: We have found progressive decrease of mean telomere length in all cancer subtypes compared with reference systems. Our results support the view that telomere attrition is an early event in tumorigenesis. TMM gets activated in all tumors studied due to concerted overexpression of a large fraction of genes with direct relation to telomere function, where only a very small fraction of them showed recurrent mutations. TEL-related transcriptional state was dominating in all CRC subtypes, showing, however, subtype-specific activation patterns; while contribution of the ALT-TMM was slightly more prominent in the hypermutated MSI s-CRC and LS-CRC. TEL-TMM is mainly activated by over-expression of DKC1 and/or TERT genes and their interaction partners, where DKC1 is more prominent in MSS than in MSI s-CRC and can serve as a transcriptomic marker of TMM activity. Conclusions: Our results suggest that transcriptional patterns are indicative for TMM pathway activation with subtle differences between TEL and ALT mechanisms in a CRC subtype-specific fashion. Sequencing data potentially provide a suited measure to study alterations of telomere length and of underlying transcriptional regulation. Further studies are needed to improve this method.

6.
Sci Rep ; 8(1): 16708, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420756

RESUMO

Magnetic resonance imaging (MRI) and prostate specific membrane antigen (PSMA)- positron emission tomography (PET)/computed tomography (CT)-imaging of prostate cancer (PCa) are emerging techniques to assess the presence of significant disease and tumor progression. It is not known, however, whether and to what extent lesions detected by these imaging techniques correlate with genomic features of PCa. The aim of this study was therefore to define a genomic index lesion based on chromosomal copy number alterations (CNAs) as marker for tumor aggressiveness in prostate biopsies in direct correlation to multiparametric (mp) MRI and 68Ga-PSMA-PET/CT imaging features. CNA profiles of 46 biopsies from five consecutive patients with clinically high-risk PCa were obtained from radiologically suspicious and unsuspicious areas. All patients underwent mpMRI, MRI/TRUS-fusion biopsy, 68Ga-PSMA-PET/CT and a radical prostatectomy. CNAs were directly correlated to imaging features and radiogenomic analyses were performed. Highly significant CNAs (≥10 Mbp) were found in 22 of 46 biopsies. Chromosome 8p, 13q and 5q losses were the most common findings. There was an strong correspondence between the radiologic and the genomic index lesions. The radiogenomic analyses suggest the feasibility of developing radiologic signatures that can distinguish between genomically more or less aggressive lesions. In conclusion, imaging features of mpMRI and 68Ga-PSMA-PET/CT can guide to the genomically most aggressive lesion of a PCa. Radiogenomics may help to better differentiate between indolent and aggressive PCa in the future.


Assuntos
Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Idoso , Humanos , Masculino
7.
Epigenomics ; 10(6): 745-764, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29888966

RESUMO

AIM: We present here a novel method that enables unraveling the interplay between gene expression and DNA methylation in complex diseases such as cancer. MATERIALS & METHODS: The method is based on self-organizing maps and allows for analysis of data landscapes from 'governed by methylation' to 'governed by expression'. RESULTS: We identified regulatory modules of coexpressed and comethylated genes in high-grade gliomas: two modes are governed by genes hypermethylated and underexpressed in IDH-mutated cases, while two other modes reflect immune and stromal signatures in the classical and mesenchymal subtypes. A fifth mode with proneural characteristics comprises genes of repressed and poised chromatin states active in healthy brain. Two additional modes enrich genes either in active or repressed chromatin states. CONCLUSION: The method disentangles the interplay between gene expression and methylation. It has the potential to integrate also mutation and copy number data and to apply to large sample cohorts.


Assuntos
Neoplasias Encefálicas/genética , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Encéfalo/metabolismo , Variações do Número de Cópias de DNA , Epigênese Genética , Expressão Gênica , Mutação
8.
NPJ Syst Biol Appl ; 4: 15, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29675268

RESUMO

Kinetic models are at the heart of system identification. A priori chosen rate functions may, however, be unfitting or too restrictive for complex or previously unanticipated regulation. We applied general purpose piecewise linear functions for stochastic system identification in one dimension using published flow cytometry data on E.coli and report on identification results for equilibrium state and dynamic time series. In metabolic labelling experiments during yeast osmotic stress response, we find mRNA production and degradation to be strongly co-regulated. In addition, mRNA degradation appears overall uncorrelated with mRNA level. Comparison of different system identification approaches using semi-empirical synthetic data revealed the superiority of single-cell tracking for parameter identification. Generally, we find that even within restrictive error bounds for deviation from experimental data, the number of viable regulation types may be large. Indeed, distinct regulation can lead to similar expression behaviour over time. Our results demonstrate that molecule production and degradation rates may often differ from classical constant, linear or Michaelis-Menten type kinetics.

9.
J Pathol ; 243(2): 242-254, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28727142

RESUMO

Colorectal cancer (CRC) arising in Lynch syndrome (LS) comprises tumours with constitutional mutations in DNA mismatch repair genes. There is still a lack of whole-genome and transcriptome studies of LS-CRC to address questions about similarities and differences in mutation and gene expression characteristics between LS-CRC and sporadic CRC, about the molecular heterogeneity of LS-CRC, and about specific mechanisms of LS-CRC genesis linked to dysfunctional mismatch repair in LS colonic mucosa and the possible role of immune editing. Here, we provide a first molecular characterization of LS tumours and of matched tumour-distant reference colonic mucosa based on whole-genome DNA-sequencing and RNA-sequencing analyses. Our data support two subgroups of LS-CRCs, G1 and G2, whereby G1 tumours show a higher number of somatic mutations, a higher amount of microsatellite slippage, and a different mutation spectrum. The gene expression phenotypes support this difference. Reference mucosa of G1 shows a strong immune response associated with the expression of HLA and immune checkpoint genes and the invasion of CD4+ T cells. Such an immune response is not observed in LS tumours, G2 reference and normal (non-Lynch) mucosa, and sporadic CRC. We hypothesize that G1 tumours are edited for escape from a highly immunogenic microenvironment via loss of HLA presentation and T-cell exhaustion. In contrast, G2 tumours seem to develop in a less immunogenic microenvironment where tumour-promoting inflammation parallels tumourigenesis. Larger studies on non-neoplastic mucosa tissue of mutation carriers are required to better understand the early phases of emerging tumours. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Neoplasias Colorretais/genética , Mutação/genética , Antígenos de Neoplasias/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/imunologia , Expressão Gênica/genética , Genes Neoplásicos/genética , Genoma Humano/genética , Humanos , Imunidade Celular , Fenótipo , Recidiva , Transcriptoma/genética , Evasão Tumoral/genética , Evasão Tumoral/imunologia
10.
Mol Biol Cell ; 24(14): 2256-68, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23676664

RESUMO

Postnatal enlargement of the mammalian intestine comprises cylindrical and luminal growth, associated with crypt fission and crypt/villus hyperplasia, respectively, which subsequently predominate before and after weaning. The bipartite adhesion G protein-coupled receptor CD97 shows an expression gradient along the crypt-villus axis in the normal human intestine. We here report that transgenic mice overexpressing CD97 in intestinal epithelial cells develop an upper megaintestine. Intestinal enlargement involves an increase in length and diameter but does not affect microscopic morphology, as typical for cylindrical growth. The megaintestine is acquired after birth and before weaning, independent of the genotype of the mother, excluding altered availability of milk constituents as driving factor. CD97 overexpression does not regulate intestinal growth factors, stem cell markers, and Wnt signaling, which contribute to epithelial differentiation and renewal, nor does it affect suckling-to-weaning transition. Consistent with augmented cylindrical growth, suckling but not adult transgenic mice show enlarged crypts and thus more crypt fissions caused by a transient increase of the crypt transit-amplifying zone. Intestinal enlargement by CD97 requires its seven-span transmembrane/cytoplasmic C-terminal fragment but not the N-terminal fragment binding partner CD55. In summary, ectopic expression of CD97 in intestinal epithelial cells provides a unique model for intestinal cylindrical growth occurring in breast-fed infants.


Assuntos
Células Epiteliais/citologia , Expressão Gênica , Mucosa Intestinal/citologia , Intestino Delgado/citologia , Glicoproteínas de Membrana/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Animais Lactentes/fisiologia , Antígenos CD55/genética , Antígenos CD55/metabolismo , Proliferação de Células , Células Epiteliais/metabolismo , Feminino , Humanos , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores Acoplados a Proteínas G , Desmame
11.
Phys Biol ; 10(2): 026006, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23481318

RESUMO

Chromatin-related mechanisms, as e.g. histone modifications, are known to be involved in regulatory switches within the transcriptome. Only recently, mathematical models of these mechanisms have been established. So far they have not been applied to genome-wide data. We here introduce a mathematical model of transcriptional regulation by histone modifications and apply it to data of trimethylation of histone 3 at lysine 4 (H3K4me3) and 27 (H3K27me3) in mouse pluripotent and lineage-committed cells. The model describes binding of protein complexes to chromatin which are capable of reading and writing histone marks. Molecular interactions of the complexes with DNA and modified histones create a regulatory switch of transcriptional activity. The regulatory states of the switch depend on the activity of histone (de-) methylases, the strength of complex-DNA-binding and the number of nucleosomes capable of cooperatively contributing to complex-binding. Our model explains experimentally measured length distributions of modified chromatin regions. It suggests (i) that high CpG-density facilitates recruitment of the modifying complexes in embryonic stem cells and (ii) that re-organization of extended chromatin regions during lineage specification into neuronal progenitor cells requires targeted de-modification. Our approach represents a basic step towards multi-scale models of transcriptional control during development and lineage specification.


Assuntos
Diferenciação Celular , Cromatina/metabolismo , Células-Tronco Embrionárias/citologia , Histonas/metabolismo , Ativação Transcricional , Animais , Células Cultivadas , Cromatina/genética , Simulação por Computador , Ilhas de CpG , DNA/genética , DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Histonas/genética , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Modelos Genéticos
12.
PLoS One ; 7(10): e46811, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23077526

RESUMO

Current genome-wide ChIP-seq experiments on different epigenetic marks aim at unraveling the interplay between their regulation mechanisms. Published evaluation tools, however, allow testing for predefined hypotheses only. Here, we present a novel method for annotation-independent exploration of epigenetic data and their inter-correlation with other genome-wide features. Our method is based on a combinatorial genome segmentation solely using information on combinations of epigenetic marks. It does not require prior knowledge about the data (e.g. gene positions), but allows integrating the data in a straightforward manner. Thereby, it combines compression, clustering and visualization of the data in a single tool. Our method provides intuitive maps of epigenetic patterns across multiple levels of organization, e.g. of the co-occurrence of different epigenetic marks in different cell types. Thus, it facilitates the formulation of new hypotheses on the principles of epigenetic regulation. We apply our method to histone modification data on trimethylation of histone H3 at lysine 4, 9 and 27 in multi-potent and lineage-primed mouse cells, analyzing their combinatorial modification pattern as well as differentiation-related changes of single modifications. We demonstrate that our method is capable of reproducing recent findings of gene centered approaches, e.g. correlations between CpG-density and the analyzed histone modifications. Moreover, combining the clustered epigenetic data with information on the expression status of associated genes we classify differences in epigenetic status of e.g. house-keeping genes versus differentiation-related genes. Visualizing the distribution of modification states on the chromosomes, we discover strong patterns for chromosome X. For example, exclusively H3K9me3 marked segments are enriched, while poised and active states are rare. Hence, our method also provides new insights into chromosome-specific epigenetic patterns, opening up new questions how "epigenetic computation" is distributed over the genome in space and time.


Assuntos
Epigênese Genética , Epigenômica/métodos , Histonas/genética , Algoritmos , Animais , Diferenciação Celular , Linhagem da Célula , Metilação de DNA , Genes Essenciais , Genoma , Camundongos
13.
Epigenomics ; 4(2): 205-19, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22449191

RESUMO

Epigenetic mechanisms play an important role in regulating and stabilizing functional states of living cells. However, in spite of an increasing amount of experimental data, models of transcriptional regulation by epigenetic processes, in particular by histone modifications, are rather rare. In this article, we focus on epigenetic modes of transcriptional regulation based on histone modifications and their potential dynamical interplay with DNA methylation and higher-order chromatin structure. The main purpose of this article is to review recent formal modeling approaches to the dynamics and propagation of histone modifications and to relate them to available experimental data. We evaluate their assumptions with respect to recruitment of relevant modifiers, establishment and processing of modifications, and compare the emerging stability properties and memory effects. Theoretical predictions that await experimental validation are highlighted and potential extensions of these models towards multiscale models of self-organizing chromatin are discussed.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Modelos Biológicos , Montagem e Desmontagem da Cromatina , Metilação de DNA , Epigênese Genética , Histonas/genética , Humanos , Schizosaccharomyces/metabolismo
14.
PLoS Comput Biol ; 7(1): e1001045, 2011 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-21253562

RESUMO

We introduce a novel dynamic model of stem cell and tissue organisation in murine intestinal crypts. Integrating the molecular, cellular and tissue level of description, this model links a broad spectrum of experimental observations encompassing spatially confined cell proliferation, directed cell migration, multiple cell lineage decisions and clonal competition.Using computational simulations we demonstrate that the model is capable of quantitatively describing and predicting the dynamic behaviour of the intestinal tissue during steady state as well as after cell damage and following selective gain or loss of gene function manipulations affecting Wnt- and Notch-signalling. Our simulation results suggest that reversibility and flexibility of cellular decisions are key elements of robust tissue organisation of the intestine. We predict that the tissue should be able to fully recover after complete elimination of cellular subpopulations including subpopulations deemed to be functional stem cells. This challenges current views of tissue stem cell organisation.


Assuntos
Intestinos/citologia , Modelos Biológicos , Células-Tronco/citologia , Apoptose , Proliferação de Células , Mucosa Intestinal/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo
15.
J Biotechnol ; 149(3): 98-114, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20156493

RESUMO

Our study addresses modes of genomic regulation and their characterization using the distribution of expression values. A simple model of transcriptional regulation is introduced to characterize the response of the global expression pattern to the changing properties of basal regulatory building blocks. Random genomes are generated which express and bind transcription factors according to the appearance of short motifs of coding and binding sequences. Regulation of transcriptional activity is described using a thermodynamic model. Our model predicts single-peaked distributions of expression values the flanks of which decay according to power laws. The characteristic exponent is inversely related to the product of the connectivity of the network times the regulatory strength of bound transcription factors. Such 'expression spectra' were calculated and analyzed for different model genomes. Information on structural properties and on the interactions of regulatory elements is used to build up a framework of basic characteristics of expression spectra. We analyze examples addressing different biological issues. Peak position and width of the experimental expression spectra vary with the biological context. We demonstrate that the study of the global expression pattern provides valuable information about transcriptional regulation which complements conventional searches for differentially expressed single genes.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genômica , Modelos Genéticos , Transcrição Gênica
16.
Biophys J ; 88(1): 62-75, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15475585

RESUMO

We present a three-dimensional individual cell-based, biophysical model to study the effect of normal and malfunctioning growth regulation and control on the spatial-temporal organization of growing cell populations in vitro. The model includes explicit representations of typical epithelial cell growth regulation and control mechanisms, namely 1), a cell-cell contact-mediated form of growth inhibition; 2), a cell-substrate contact-dependent cell-cycle arrest; and 3), a cell-substrate contact-dependent programmed cell death (anoikis). The model cells are characterized by experimentally accessible biomechanical and cell-biological parameters. First, we study by variation of these cell-specific parameters which of them affect the macroscopic morphology and growth kinetics of a cell population within the initial expanding phase. Second, we apply selective knockouts of growth regulation and control mechanisms to investigate how the different mechanisms collectively act together. Thereby our simulation studies cover the growth behavior of epithelial cell populations ranging from undifferentiated stem cell populations via transformed variants up to tumor cell lines in vitro. We find that the cell-specific parameters, and in particular the strength of the cell-substrate anchorage, have a significant impact on the population morphology. Furthermore, they control the efficacy of the growth regulation and control mechanisms, and consequently tune the transition from controlled to uncontrolled growth that is induced by the failures of these mechanisms. Interestingly, however, we find the qualitative and quantitative growth kinetics to be remarkably robust against variations of cell-specific parameters. We compare our simulation results with experimental findings on a number of epithelial and tumor cell populations and suggest in vitro experiments to test our model predictions.


Assuntos
Apoptose , Biofísica/métodos , Células Epiteliais/citologia , Animais , Anoikis , Adesão Celular , Biologia Celular , Comunicação Celular , Ciclo Celular , Diferenciação Celular , Divisão Celular , Proliferação de Células , Simulação por Computador , Humanos , Técnicas In Vitro , Cinética , Ligantes , Modelos Biológicos , Modelos Teóricos , Processos Estocásticos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA