Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 172297, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588736

RESUMO

Soil pollution by As and Hg is a pressing environmental issue given their persistence. The intricate removal processes and subsequent accumulation of these elements in soil adversely impact plant growth and pose risks to other organisms in the food chain and to underground aquifers. Here we assessed the effectiveness of non-toxic industrial byproducts, namely coal fly ash and steelmaking slag, as soil amendments, both independently and in conjunction with an organic fertilizer. This approach was coupled with a phytoremediation technique involving Betula pubescens to tackle soil highly contaminated. Greenhouse experiments were conducted to evaluate amendments' impact on the growth, physiology, and biochemistry of the plant. Additionally, a permeable barrier made of byproducts was placed beneath the soil to treat leachates. The application of the byproducts reduced pollutant availability, the production of contaminated leachates, and pollutant accumulation in plants, thereby promoting plant development and survival. Conversely, the addition of the fertilizer alone led to an increase in As accumulation in plants and induced the production of antioxidant compounds such as carotenoids and free proline. Notably, all amendments led to increased thiolic compound production without affecting chlorophyll synthesis. While fertilizer application significantly decreased parameters associated with oxidative stress, such as hydrogen peroxide and malondialdehyde, no substantial reduction was observed after byproduct application. Thermal desorption analysis of the byproducts revealed Hg immobilization mechanisms, thereby indicating retention of this metalloid in the form of Hg chloride. In summary, the revalorization of industrial byproducts in the context of the circular economy holds promise for effectively immobilizing metal(loid)s in heavily polluted soils. Additionally, this approach can be enhanced through synergies with phytoremediation.


Assuntos
Betula , Biodegradação Ambiental , Cinza de Carvão , Poluentes do Solo , Arsênio , Mercúrio , Mineração , Fertilizantes , Aço , Recuperação e Remediação Ambiental/métodos , Solo/química , Resíduos Industriais
2.
Chemosphere ; 358: 142135, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670513

RESUMO

We present the Three-Parameter Penalized Attributive Analysis for Upgrading (3PPAA-U) method as a tool for selecting the Best Upgrading Condition (BUC) in process engineering. Conventional approaches tend to consider only maximizing recovery (ε) and minimizing yield (γc); in contrast, the proposed 3PPAA-U introduces and seeks to maximize a third parameter, the grade (λ). This multi-parameter approach has not yet been explored in existing literature. In addition to controlling multiple parameters, the method is also superior to others as it includes inverse standard deviation weighting to avoid the distortion of results due to data dispersion. This reduces the possibility of drawing conclusions based on extreme values. Furthermore, the method can be used with a target-to-distance correction to optimize separation for multi-component feeds. To illustrate our method, we present a practical application of 3PPAA-U. Soil contaminated with potentially toxic elements (PTEs) was subject to hydrocycloning under 12 different experimental conditions. Results of these 12 experiments were compared using 3PPAA-U and conventional methods to identify the best upgrading conditions (BUC). Analysis reveals that the 3PPAA-U approach offers a simple and effective criterion for selecting BUC. Furthermore, 3PPAA-U has uses beyond soil remediation. It offers a versatile tool for optimizing operations across various processing and manufacturing environments offering a way to manage factors such as concentration, temperature, pressure, pH, Eh, grain size, and even broader environmental and economic considerations.


Assuntos
Algoritmos , Descontaminação , Recuperação e Remediação Ambiental , Poluentes do Solo , Solo , Poluentes do Solo/análise , Solo/química , Recuperação e Remediação Ambiental/métodos , Descontaminação/métodos
3.
J Environ Manage ; 354: 120293, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387345

RESUMO

The recurrence and severity of wildfire is on the rise due to factors like global warming and human activities. Mediterranean regions are prone to significant wildfire events, which cause extensive damage to ecosystems and soil properties. This study focuses on the municipality of Allande in south-western Asturias (Spain), a region highly affected by recurrent wildfires. In this regard, we sought to examine how the recurrence of such fires influences soil organic carbon fractionation and other soil parameters, such as nitrogen fractionation, pH, and cation exchange capacity. The study involved six sampling plots with between varying fire recurrence levels, from 0 to 4 events between 2005 and 2022. The results revealed some significant effects of wildfires recurrence on soil texture, inorganic elemental composition and CEC, but not on pH and CE. In soil affected by recurrent fires, labile carbon fractions (cold-water extractable & hot-water extractable), and fulvic acid concentrations decreased by up to 36%, 5%, and 45%, respectively in comparison with undisturbed soil. In contrast, humic acid concentration remained stable or increased in soils damaged by fire. Additionally, nitrogen species in soil were observed to decrease significantly in high recurrence scenarios, especially nitrate. On the basis of our findings, we conclude that wildfires impact the distinct fractions of organic carbon and nitrogen in soils and that this effect is aggravated by increasing recurrence.


Assuntos
Incêndios , Incêndios Florestais , Humanos , Solo/química , Ecossistema , Florestas , Carbono/química , Água , Nitrogênio/análise
4.
J Hazard Mater ; 466: 133529, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244449

RESUMO

Here, we propose two-parameter penalized attributive analysis, PPAA-U, a novel heuristic tool for selecting the best upgrading conditions (BUCs) for soil washing. Given a multi-component feed and a specific set of operating conditions, PPAA-U generates a quality index based on how well recoveries for key components are maximized while minimizing the yield. We demonstrate, through the calculation of families of curves, that this quality index is related linearly to recovery and to the inverse of the yield, meaning that reducing yield values is more important than maximizing recovery. To evaluate our method, electrostatic separation at 12 different voltages was carried out on soil samples from an ex-industrial site in Spain. Values of recovery, yield, and grade were analyzed using basic attributive analysis and PPAA-U with and without target-to-distance correction. Both methods identified the same optimal separation voltage, and the power of PPAA-U to correct for high variation in yields and recoveries was observed as a divergence between results produced by each method at low voltages where variation in these values was greatest. PPAA-U thus offers a convenient tool for soil washing optimization, and we suggest that it could be applied successfully to other industrial processes.

5.
Ecotoxicol Environ Saf ; 272: 116015, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38290314

RESUMO

Graphene oxide (GOx) is a nanomaterial with demonstrated capacity to remove metals from water. However, its effects on organic pollutants and metal(loid)s present in polluted soils when used for remediation purposes have not been extensively addressed. Likewise, few studies describe the effects of GOx on edaphic properties and soil biology. In this context, here we assessed the potential of GOx for remediating polluted soil focusing also on different unexplored effects of GOx in soil. To achieve this, we treated soil contaminated with concurrent inorganic (As and metals) and organic pollution (TPH and PAHs), using GOx alone and in combination with nutrients (N and P sources). In both cases increased availability of As and Zn was observed after 90 days, whereas Cu and Hg availability was reduced and the availability of Pb and the concentration of organic pollutants were not significantly affected. The application of GOx on the soil induced a significant and rapid change (within 1 week) in microbial populations, leading to a transient reduction in biodiversity, consistent with the alteration of several soil properties. Concurrently, the combination with nutrients exhibited a distinct behaviour, manifesting a more pronounced and persistent shift in microbial populations without a decrease in biodiversity. On the basis of these findings, GOx emerges as a versatile amendment for soil remediation approaches.


Assuntos
Poluentes Ambientais , Grafite , Metais Pesados , Microbiota , Poluentes do Solo , Solo/química , Poluentes do Solo/análise , Metais , Metais Pesados/análise
6.
Environ Pollut ; 333: 122066, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37343919

RESUMO

The combination of a low-density geochemical survey, multispectral data obtained with Unmanned Aerial Vehicle-Remote Sensing (UAV-RS), and a machine learning technique was tested in the search for a statistically robust prediction of contaminant distribution in soil and vegetation, for zones with a highly variable pollutant load. To this end, a novel methodology was devised by means of a limited geochemical study of topsoil and vegetation combined with multispectral data obtained by UAV-RS. The methodology was verified in an area affected by Hg and As contamination that typifies abandoned mining-metallurgy sites in recent decades. A broad selection of spectral indices were calculated to evaluate soil-plant system response, and four machine learning techniques (Multiple Linear Regression, Random Forest, Generalized Boosted Models, and Multivariate Adaptive Regression Spline) were tested to obtain robust statistical models. Random Forest (RF) provided the best non-biased models for As and Hg concentration in soil and vegetation, with R2 and rRMSE (%) ranging from 0.501 to 0.630 and from 180.72 to 46.31, respectively, and with acceptable values for RPD and RPIQ statistics. The prediction and mapping of contaminant content and distribution in the study area were well enough adjusted to the geochemical data and revealed superior accuracy for As than Hg, and for vegetation than topsoil. The results were more precise than those obtained in comparable studies that applied satellite or spectrometry data. In conclusion, the methodology presented emerges as a powerful tool for studies addressing soil and vegetation pollution and an alternative approach to classical geochemical studies, which are time-consuming and expensive.

7.
Exp Appl Acarol ; 87(4): 325-335, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35984583

RESUMO

Predatory mite species (Acari: Phytoseiidae) are essential tools in the biological control of greenhouses pests. The natural enemies can be released directly into a crop. A better, partly preventive system is to place slow-release sachets on the plants. Inside such sachets is a factitious prey's food substrate-which also acts as refuge-and the predator. The objective of this study was to develop a new methodology to evaluate the population dynamics of this sachet system, based on the factitious prey Carpoglyphus lactis and the predatory mite Amblyseius swirskii. Through two tests carried out under laboratory conditions, the sachets were first compared to the traditional extraction method that uses Berlese-Tullgren funnels and an extraction method using flotation in hexane. The latter method proved more effective at sampling the motile states (larvae, nymphs, and adults), both for the predatory species and for the factitious prey, extracting up to 3.7 × more mites than the Berlese-Tullgren funnel. Second, the population dynamics of both mite species was studied in a laboratory test, both inside and outside the sachets. In this way, a positive correlation was demonstrated between the number of predatory mites and the number of prey mites inside the sachets. Conversely, no correlation was found between the interior population of predatory mites and the number that venture outside. We can conclude that hexane extraction is very useful both in quality control of predatory mites and in studying how the sachets behave when faced with various factors.


Assuntos
Ácaros , Animais , Hexanos , Ninfa , Controle Biológico de Vetores/métodos , Dinâmica Populacional , Comportamento Predatório
8.
J Hazard Mater ; 439: 129519, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35882173

RESUMO

The remobilization of metals accumulated in contaminated soils poses a threat to humans and ecosystems in general. Tracing metal fractionation provides valuable information for understanding the remobilization processes in smelting areas. Based on the difference between the isotopic system of Cd and Zn, this work aimed to couple isotope data and their leachability to identify possible remobilization processes in several soil types and land uses. For soil samples, the δ66/64Zn values ranged from 0.12 ± 0.05‰ to 0.28 ± 0.05‰ in Avilés (Spain) and from - 0.09 ± 0.05‰ to - 0.21 ± 0.05‰ in Príbram (Czech Republic), and the δ114/110Cd ranged from - 0.13 ± 0.05‰ to 0.01 ± 0.04‰ in Avilés and from - 0.86 ± 0.27‰ to - 0.24 ± 0.05‰ in Príbram. The metal fractions extracted using chemical extractions were always enriched in heavier Cd isotopes whilst Zn isotope systematics exhibited light or heavy enrichment according to the soil type and land uses. Coupling Zn and Cd systematics provided a tool for deciphering the mechanisms behind the remobilization processes: leaching of the anthropogenic materials and/or metal redistribution within the soil components prior to remobilization.


Assuntos
Poluentes do Solo , Solo , Cádmio , Ecossistema , Monitoramento Ambiental , Humanos , Isótopos/análise , Metais , Poluentes do Solo/análise , Zinco/análise
9.
Chemosphere ; 301: 134645, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35439496

RESUMO

Although different amendments have been used for the immobilization of metals and metalloids in contaminated soils, in most of them there are still important challenges that need to be faced in order to achieve an optimal result. In this work, a new material based on a carbon foam impregnated with goethite nanoneedles has been developed with the aim of evaluating its effect on the mobility and availability of As, Cd, Cu, Pb and Zn in an industrial soil. For this purpose, leaching, sequential extraction and phytotoxicity studies have been carried out. The results were compared with the same carbon foam without goethite impregnation. When the soil was treated with goethite-based carbon foam nanocomposite, the mobility of metal(loid)s was markedly reduced, with the exception of Zn, which showed moderate immobilization. The presence of acid groups on the surface of the carbon foam, together with a high surface area, led to a strong immobilization of pollutants. Moreover, the modification of the foams using goethite nanoneedles, imply that the novel nanocomposite obtained is effective to remediate simultaneously metal and metalloid-polluted soils, without any relevant effect on soil toxicity.


Assuntos
Arsênio , Metais Pesados , Nanocompostos , Poluentes do Solo , Arsênio/análise , Carbono , Compostos de Ferro , Metais , Metais Pesados/análise , Minerais , Solo , Poluentes do Solo/análise
10.
J Hazard Mater ; 433: 128748, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35405586

RESUMO

Zero valent iron nanoparticles (nZVI) attract interest given their effectiveness in soil remediation. However, little attention has been given to their impacts on plants. Likewise, although fertilizers are commonly used to enhance phytoremediation, their effects on As mobilization, resulting in potential toxic effects, require further study. In this context, we examined the impact of As and Hg accumulation on the antioxidative system of Medicago sativa grown in a soil amended with organic fertilizer and/or nZVI. The experiment consisted of 60 pots. Plants were pre-grown and transferred to pots, which were withdrawn along time for monitoring purposes. As and Hg were monitored in the soil-plant system, and parameters related to oxidative stress, photosynthetic pigments, and non-protein thiol compounds (NPTs) were measured. In general, the application of nZVI immobilized As in soil and increased Hg accumulation in the plant, although it surprisingly decreased oxidative stress. Plants in nZVI-treated soil also showed an increase in NPT content in roots. In contrast, the application of the fertilizer mobilized As, thereby improving bioaccumulation factors. However, when combining fertilizer with nZVI, the As accumulation is mitigated. This observation reveals that simultaneous amendments are a promising approach for soil stabilization and the phytomanagement of As/Hg-polluted soils.


Assuntos
Arsênio , Recuperação e Remediação Ambiental , Mercúrio , Nanopartículas , Poluentes do Solo , Antioxidantes , Arsênio/análise , Biodegradação Ambiental , Fertilizantes , Ferro/análise , Medicago sativa , Solo , Poluentes do Solo/análise
11.
J Hazard Mater ; 424(Pt B): 127413, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34879507

RESUMO

Industrial sites affected by anthropogenic contamination, both past and present-day, commonly have intricate pollutant patterns, and source discrimination can be thus highly challenging. To this goal, this paper presents a novel approach combining multivariate statistics and environmental forensic techniques. The efficiency of this methodology was exemplified in a severely polluted estuarine area (Avilés, Spain), where factor analysis and clustering were performed to identify sub-areas with distinct geochemical behaviour. Once six clusters were defined and a pollution index applied, forensic tools revealed that the As speciation, Pb isotopes, and PAHs molecular ratios were useful to categorise the cluster groups on the basis of distinct pollution sources: Zn-smelting, coaly particles and waste disposal. Overall, this methodology offers valuable insight into pollution sources identification, which can be extended to comparable scenarios of complexly polluted environmental compartments. The information gathered using this approach is also important for the planning of risk assessment procedures and potential remediation strategies.


Assuntos
Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Monitoramento Ambiental , Poluição Ambiental , Resíduos Industriais/análise , Metais Pesados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco , Poluentes do Solo/análise
12.
Sci Total Environ ; 812: 152383, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34952083

RESUMO

Potentially Toxic Elements (PTEs) are contaminants with high toxicity and complex geochemical behaviour and, therefore, high PTEs contents in soil may affect ecosystems and/or human health. However, before addressing the measurement of soil pollution, it is necessary to understand what is meant by pollution-free soil. Often, this background, or pollution baseline, is undefined or only partially known. Since the concentration of chemical elements is compositional, as the attributes vary together, here we present a novel approach to build compositional indicators based on Compositional Data (CoDa) principles. The steps of this new methodology are: 1) Exploratory data analysis through variation matrix, biplots or CoDa dendrograms; 2) Selection of geological background in terms of a trimmed subsample that can be assumed as non-pollutant; 3) Computing the spread Aitchison distance from each sample point to the trimmed sample; 4) Performing a compositional balance able to predict the Aitchison distance computed in step 3.Identifying a compositional balance, including pollutant and non-pollutant elements, with sparsity and simplicity as properties, is crucial for the construction of a Compositional Pollution Indicator (CI). Here we explored a database of 150 soil samples and 37 chemical elements from the contaminated region of Langreo, Northwestern Spain. There were obtained three Cis: the first two using elements obtained through CoDa analysis, and the third one selecting a list of pollutants and non-pollutants based on expert knowledge and previous studies. The three indicators went through a Stochastic Sequential Gaussian simulation. The results of the 100 computed simulations are summarized through mean image maps and probability maps of exceeding a given threshold, thus allowing characterization of the spatial distribution and variability of the CIs. A better understanding of the trends of relative enrichment and PTEs fate is discussed.


Assuntos
Metais Pesados , Poluentes do Solo , Ecossistema , Monitoramento Ambiental , Poluição Ambiental , Humanos , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise , Espanha
13.
Environ Pollut ; 266(Pt 1): 115341, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32854063

RESUMO

Benzo[a]pyrene (BaP) is a hazardous compound for human health and for environmental compartments. Its transfer and deposition through the atmosphere affects soil quality. In this context, we quantified the content of BaP and other Polycyclic Aromatic Hydrocarbons (PAHs) in the soils of a prominent Coal Region in Transition to test whether the soil screening levels in force are realistic and whether they reflect the complexity of regions closely linked to heavy industries and mining. In this regard, soil screening levels are thresholds often established without considering historical anthropogenic activities that affect soil (diffuse pollution). The 150 soil samples studied showed a notable content of high molecular weight PAHs, and BaP surpassed the threshold levels in practically the entire area. PAH-parent diagrams revealed a relatively homogenous fingerprint of four clusters obtained in a multivariate statistical study. In addition, molecular diagnostic ratios pointed to coal combustion as the main pollution source, whereas only some outliers appeared to be related to specific spills. A BaP threshold was calculated to be 0.24 mg kg-1, over 10 times the limit established in Spain. Finally, a factor analysis revealed a positive correlation of BaP with elements usually emitted in coal combustion processes, such as Tl and V. This observation fosters the hypothesis of a historical and indelible pollution fingerprint in soils whose sources, characteristics and potential environmental and health concerns deserve further attention. All things considered, caution should be taken when using soil screening levels in regions associated with coal exploitation and heavy industry.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise , Benzo(a)pireno/análise , Carcinógenos/análise , China , Carvão Mineral/análise , Monitoramento Ambiental , Humanos , Medição de Risco , Solo , Espanha
14.
Chemosphere ; 238: 124624, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31472353

RESUMO

The capacity of two iron-based nanomaterials, namely goethite nanospheres (nGoethite) and zero valent iron nanoparticles (nZVI), to immobilize As in a polluted soil was evaluated and compared. The composition and morphology of the products were studied by energy dispersive X-ray analysis and transmission electron microscopy, while zeta potential and average sizes were determined by dynamic light scattering. To assess As immobilization, soil subsamples were treated with nGoethite or nZVI at a range of Fe doses (0.5%, 2%, 5% and 10%) and then studied by the TCLP test and the Tessier sequential extraction procedure. The influence of both nanoparticles on As speciation was determined, as was impact on soil pH, electrical conductivity, Fe availability and phytotoxicity (watercress germination). For nZVI, notable results were achieved at a dose of 2% (89.5% decrease in As, TCLP test), and no negative effects on soil parameters were detected. Indeed, even soil phytotoxicity was reduced and only at the highest dose was a slight increase in As3+ detected. In contrast, excellent results were obtained for nGoethite at the lowest dose (0.2%) (82.5% decrease in As, TCLP test); however, soil phytotoxicity was increased at higher doses, probably due to a marked enhancement of electrical conductivity. For both types of nanoparticle, slight increases in Fe availability were observed. Thus, our results show that both nZVI and nGoethite have the capacity to effectively immobilize As in this brownfield. The use of lower doses of nGoethite emerges as a promising soil remediation strategy for soils affected by As pollution.


Assuntos
Arsênio/análise , Poluição Ambiental/análise , Recuperação e Remediação Ambiental/métodos , Nanopartículas Metálicas/química , Poluentes do Solo/análise , Solo/química , Ferro/química , Compostos de Ferro/química , Microscopia Eletrônica de Transmissão , Minerais/química , Espectrometria por Raios X
15.
Mar Pollut Bull ; 149: 110576, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31546111

RESUMO

Samples from 13 beaches along the northern Spanish coast, a region with a history of heavy industries, were first screened to identify signs of pollution. High concentrations of Hg and Ba on Vega beach were found, both elements belong to the fluorite ore paragenesis, mined in the surroundings. Samples of beach and fluvial sediments, and nearby soils were collected in Vega beach area to address potential Hg pollution, fate and sources. Most samples showed a similar pollutants fingerprint to that of beach samples, especially those taken from white dunes, registering notable Hg concentrations. Hg was enriched in the finer fractions, and overall the main input was attributed to the mining waste discharged along the coast in the past. Although a specific risk assessment and study of the submerged sediments are advisable for this area, Hg bioavailability and methylation were low, thus indicating that this metal poses a reduced environmental risk.


Assuntos
Mercúrio/análise , Mineração , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Bário/análise , Praias , Disponibilidade Biológica , Monitoramento Ambiental , Sedimentos Geológicos/análise , Mercúrio/farmacocinética , Metais/análise , Poluentes do Solo/farmacocinética , Espanha , Poluentes Químicos da Água/farmacocinética
16.
Sci Total Environ ; 675: 165-175, 2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31026640

RESUMO

In the last decade, several laboratory-scale experiments have shown the use of nanoscale zero-valent iron (nZVI) to be effective in reducing metal(loid) availability in polluted soils. The present study evaluates the capacity of nZVI for reducing the availability of As and Hg in brownfield soils at a pilot scale, and monitors the stability of the immobilization of these contaminants over a 32 month period. To the best of our knowledge, this is the first study to apply nZVI to metal(loid)-polluted soils under field conditions. Two sub-areas (A and B) that differed in pollution load were selected, and a 5 m2 plot was treated with 2.5% nZVI (by weight) in each case (Nanofer 25S, NanoIron). In sub-area A, which had a greater degree of pollution, a second application was performed eight months after the first application. Overall, the treatment significantly reduced the availability of both As and Hg, after only 72 h, although the effectiveness of the treatment was highly dependent on the degree of initial contamination. Sub-area B (with a lower level of pollution) showed the best and most stable immobilization results, with As and Hg in toxicity characteristics leaching procedure (TCLP) extracts decreasing by 70% and 80%, respectively. In comparison, the concentrations of As and Hg in sub-area A decreased by 65% and 50%, respectively. Based on our findings, the use of nZVI at a dose of 2.5% appears to be an effective approach for the remediation of soils at this brownfield site, especially in sub-area B. For sub-area A, a higher dose of nZVI-or its use in combination with other remediation strategies-should be tested.

17.
Chemosphere ; 218: 767-777, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30508795

RESUMO

The impact of mining activities on the environment is vast. In this regard, many mines were operating well before the introduction of environmental law. This is particularly true of cinnabar mines, whose activity has declined for decades due to growing public concern regarding Hg high toxicity. Here we present the exemplary case study of an abandoned Hg mine located in the Somiedo Natural Reserve (Spain). Until its closure in the 1970s, this mine operated under no environmental regulations, its tailings dumped in two spoil heaps, one of them located uphill and the other in the surroundings of the village of Caunedo. This study attempts to outline the degree to which soil and other environmental compartments have been affected by the two heaps. To this end, we used a novel combination of multivariate statistical, geostatistical and machine-learning methodologies. The techniques used included principal component and clustering analysis, Bayesian networks, indicator kriging, and sequential Gaussian simulations. Our results revealed high concentrations of Hg and, secondarily, As in soil but not in water or sediments. The innovative methodology abovementioned allowed us to identify natural and anthropogenic associations between 25 elements and to conclude that soil pollution was attributable mainly to natural weathering of the uphill heap. Moreover, the probability of surpassing the threshold limits and the local backgrounds was found to be high in a large extension of the area. The methodology used herein demonstrated to be effective for addressing complex pollution scenarios and therefore they are applicable to similar cases.


Assuntos
Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Aprendizado de Máquina , Mercúrio/análise , Mineração , Teorema de Bayes , Análise por Conglomerados , Compostos de Mercúrio , Análise Multivariada , Análise de Componente Principal , Poluentes do Solo/análise , Espanha
18.
Sci Total Environ ; 631-632: 1117-1126, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29727938

RESUMO

When considering complex scenarios involving several attributes, such as in environmental characterization, a clearer picture of reality can be achieved through the dimensional reduction of data. In this context, maps facilitate the visualization of spatial patterns of contaminant distribution and the identification of enriched areas. A set, of 15 Potentially Toxic Elements (PTEs) - (As, Ba, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Se, Tl, V, and Zn), was measured in soil, collected in Langreo's municipality (80km2), Spain. Relative enrichment (RE) is introduced here to refer to the proportion of elements present in a given context. Indeed, a novel approach is provided for research into PTE fate. This method involves studying the variability of PTE proportions throughout the study area, thereby allowing the identification of dissemination trends. Traditional geostatistical approaches commonly use raw data (concentrations) accepting that the elements analyzed make up the entirety of the soil. However, in geochemical studies the analyzed elements are just a fraction of the total soil composition. Therefore, considering compositional data is pivotal. The spatial characterization of PTEs considering raw and compositional data together allowed a broad discussion about, not only the PTEs concentration's distribution but also to reckon possible trends of relative enrichment (RE). Transformations to open closed data are widely used for this purpose. Spatial patterns have an indubitable interest. In this study, the Centered Log-ratio transformation (clr) was used, followed by its back-transformation, to build a set of compositional data that, combined with raw data, allowed to establish the sources of the PTEs and trends of spatial dissemination. Based on the obtained findings it was possible to conclude that the Langreo area is deeply affected by its industrial and mining legacy. City center is highly enriched in Pb and Hg and As shows enrichment in a northwesterly direction.

19.
J Hazard Mater ; 350: 55-65, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29448214

RESUMO

The present study focuses on soil washing enhancement via soil pretreatment with nanoscale zero-valent iron (nZVI) for the remediation of potentially toxic elements. To this end, soil polluted with As, Cu, Hg, Pb and Sb was partitioned into various grain sizes (500-2000, 125-500 and <125 µm). The fractions were pretreated with nZVI and subsequently subjected, according to grain size, to Wet-High Intensity Magnetic Separation (WHIMS) or hydrocycloning. The results were compared with those obtained in the absence of nanoparticles. An exhaustive characterization of the magnetic signal of the nanoparticles was done. This provided valuable information regarding potentially toxic elements (PTEs) fate, and allowed a metallurgical accounting correction considering the dilution effects caused by nanoparticle addition. As a result, remarkable recovery yields were obtained for Cu, Pb and Sb, which concentrated with the nZVI in the magnetically separated fraction (WHIMS tests) and underflow (hydrocyclone tests). In contrast, Hg, concentrated in the non-magnetic fraction and overflow respectively, while the behavior of As was unaltered by the nZVI pretreatment. All things considered, the addition of nZVI enhanced the efficiency of soil washing, particularly for larger fractions (125-2000 µm). The proposed methodology lays the foundations for nanoparticle utilization in soil washing operations.

20.
Sci Total Environ ; 610-611: 820-830, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28826120

RESUMO

Arsenic and mercury are potentially toxic elements of concern for soil, surficial and ground waters, and sediments. In this work various geochemical and hydrogeological tools were used to study a paradigmatic case of the combined effects of the abandonment of Hg- and As-rich waste on these environmental compartments. Continuous weathering of over 40years has promoted As and Hg soil pollution (thousands of ppm) in the surroundings of a former Hg mining-metallurgy site and affected the water quality of a nearby river and shallow groundwater. In particular, the high availability of As both in soils and waste was identified as one of the main determinants of contaminant distribution, whereas the impact of Hg was found to be minor, which is explained by lower mobility. Furthermore, potential additional sources of pollution (coal mining, high natural backgrounds, etc.) discharging into the study river were revealed less significant than the contaminants generated in the Hg-mining area. The transport and deposition of pollutants within the water cycle has also affected several kilometres downstream of the release areas and the chemistry of stream sediments. Overall, the environmental compartments studies held considerable concentrations of Hg and As, as remarkably revealed by the average contaminant load released in the river (several tons of As per year) and the accumulation of toxic elements in sediments (enrichment factors of As and Hg above 35).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA