Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37568749

RESUMO

Breast sarcomas (BSs), phyllodes tumors (PTs), and desmoid tumors (DTs) are rare entities that arise from connective tissue. BSs can be classified as either primary or secondary, whether they develop de novo or after radiation exposure or lymphedema. PIK3CA seems to play an important common role in different BS. Malignant PTs show similar behavior to BSs, while DTs are locally aggressive but rarely metastasize. BSs usually present as unilateral, painless, rapidly growing masses with rare nodal involvement. The diagnosis should be based on magnetic resonance imaging and a core needle biopsy. Staging should comprise a chest computed tomography (CT) scan (except for benign PT and DT), while abdominal and pelvic CT scans and bone scans should be added in certain subtypes. The mainstay of treatment for localized BS is surgery, with margin goals that vary according to subtype. Radiotherapy and chemotherapy can be used as neoadjuvant or adjuvant approaches, but their use in these settings is not standard. Advanced BS should be treated with systemic therapy, consistent with recommendations for advanced soft tissue sarcomas of other topographies. Given the rarity and heterogeneity of these entities, multidisciplinary and multi-institutional collaboration and treatment at reference centers are critical.

2.
Front Bioinform ; 2: 786898, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304260

RESUMO

RNA-seq analysis of alternative pre-mRNA splicing has facilitated an unprecedented understanding of transcriptome complexity in health and disease. However, despite the availability of countless bioinformatic pipelines for transcriptome-wide splicing analysis, the use of these tools is often limited to expert bioinformaticians. The need for high computational power, combined with computational outputs that are complicated to visualize and interpret present obstacles to the broader research community. Here we introduce DJExpress, an R package for differential expression analysis of transcriptomic features and expression-trait associations. To determine gene-level differential junction usage as well as associations between junction expression and molecular/clinical features, DJExpress uses raw splice junction counts as input data. Importantly, DJExpress runs on an average laptop computer and provides a set of interactive and intuitive visualization formats. In contrast to most existing pipelines, DJExpress can handle both annotated and de novo identified splice junctions, thereby allowing the quantification of novel splice events. Moreover, DJExpress offers a web-compatible graphical interface allowing the analysis of user-provided data as well as the visualization of splice events within our custom database of differential junction expression in cancer (DJEC DB). DJEC DB includes not only healthy and tumor tissue junction expression data from TCGA and GTEx repositories but also cancer cell line data from the DepMap project. The integration of DepMap functional genomics data sets allows association of junction expression with molecular features such as gene dependencies and drug response profiles. This facilitates identification of cancer cell models for specific splicing alterations that can then be used for functional characterization in the lab. Thus, DJExpress represents a powerful and user-friendly tool for exploration of alternative splicing alterations in RNA-seq data, including multi-level data integration of alternative splicing signatures in healthy tissue, tumors and cancer cell lines.

3.
Cell Rep ; 18(2): 334-343, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28076779

RESUMO

Genomic instability is frequently caused by nucleic acid structures termed R-loops that are formed during transcription. Despite their harmful potential, mechanisms that sense, signal, and suppress these structures remain elusive. Here, we report that oscillations in transcription dynamics are a major sensor of R-loops. We show that pausing of RNA polymerase II (RNA Pol II) initiates a signaling cascade whereby the serine/arginine protein kinase 2 (SRPK2) phosphorylates the DDX23 helicase, culminating in the suppression of R-loops. We show that in the absence of either SRPK2 or DDX23, accumulation of R-loops leads to massive genomic instability revealed by high levels of DNA double-strand breaks (DSBs). Importantly, we found DDX23 mutations in several cancers and detected homozygous deletions of the entire DDX23 locus in 10 (17%) adenoid cystic carcinoma (ACC) samples. Our results unravel molecular details of a link between transcription dynamics and RNA-mediated genomic instability that may play important roles in cancer development.


Assuntos
RNA Helicases DEAD-box/metabolismo , Instabilidade Genômica , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade de RNA/genética , Transcrição Gênica , Carcinoma Adenoide Cístico/genética , Carcinoma Adenoide Cístico/patologia , Linhagem Celular Tumoral , Dano ao DNA , Humanos , Conformação de Ácido Nucleico , Fosforilação , Interferência de RNA , RNA Polimerase II/metabolismo , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Spliceossomos/metabolismo
4.
Mol Biol Cell ; 25(2): 302-17, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24258023

RESUMO

The structural maintenance of chromosomes (SMC) proteins constitute the core of critical complexes involved in structural organization of chromosomes. In yeast, the Smc5/6 complex is known to mediate repair of DNA breaks and replication of repetitive genomic regions, including ribosomal DNA loci and telomeres. In mammalian cells, which have diverse genome structure and scale from yeast, the Smc5/6 complex has also been implicated in DNA damage response, but its further function in unchallenged conditions remains elusive. In this study, we addressed the behavior and function of Smc5/6 during the cell cycle. Chromatin fractionation, immunofluorescence, and live-cell imaging analyses indicated that Smc5/6 associates with chromatin during interphase but largely dissociates from chromosomes when they condense in mitosis. Depletion of Smc5 and Smc6 resulted in aberrant mitotic chromosome phenotypes that were accompanied by the abnormal distribution of topoisomerase IIα (topo IIα) and condensins and by chromosome segregation errors. Importantly, interphase chromatin structure indicated by the premature chromosome condensation assay suggested that Smc5/6 is required for the on-time progression of DNA replication and subsequent binding of topo IIα on replicated chromatids. These results indicate an essential role of the Smc5/6 complex in processing DNA replication, which becomes indispensable for proper sister chromatid assembly in mitosis.


Assuntos
Proteínas de Ciclo Celular/genética , Replicação do DNA/genética , Mitose/genética , Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular/química , Cromatina/genética , Proteínas Cromossômicas não Histona , Segregação de Cromossomos/genética , Estruturas Cromossômicas/química , Estruturas Cromossômicas/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Complexos Multiproteicos/química , Complexos Multiproteicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA