Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38539468

RESUMO

This comprehensive review delves into various immunotherapeutic approaches for the management of actinic keratoses (AKs), precancerous skin lesions associated with UV exposure. Although there are treatments whose main mechanism of action is immune modulation, such as imiquimod or diclofenac, other treatments, apart from their main effect on dysplastic cells, exert some immunological action, which in the end contributes to their efficacy. While treatments like 5-fluorouracil, imiquimod, photodynamic therapy, and nicotinamide are promising in the management of AKs, especially in immunocompetent individuals, their efficacy is somewhat reduced in solid organ transplant recipients due to immunosuppression. The analysis extends to optimal combination, focusing on cryoimmunotherapy as the most relevant. New immunotherapies include resimiquimod, ingenol disoxate, N-phosphonacetyl-L-aspartate (PALA), or anti-PD1 that have shown promising results, although more studies are needed in order to standardize their use.

2.
Front Oncol ; 12: 970279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338755

RESUMO

Non-melanoma skin cancer has recently seen an increase in prevalence, and it is estimated that this grow will continue in the coming years. In this sense, the importance of therapy effectiveness has increased, especially photodynamic therapy. Photodynamic therapy has attracted much attention as a minimally invasive, selective and repeatable approach for skin cancer treatment and prevention. Although its high efficiency, this strategy has also faced problems related to tumor resistance, where the tumor microenvironment has gained a well-deserved role in recent years. Tumor microenvironment denotes a wide variety of elements, such as cancer-associated fibroblasts, immune cells, endothelial cells or the extracellular matrix, where their interaction and the secretion of a wide diversity of cytokines. Therefore, the need of designing new strategies targeting elements of the tumor microenvironment to overcome the observed resistance has become evident. To this end, in this review we focus on the role of cancer-associated fibroblasts and tumor-associated macrophages in the resistance to photodynamic therapy. We are also exploring new approaches consisting in the combination of new and old drugs targeting these cells with photodynamic therapy to enhance treatment outcomes of non-melanoma skin cancer.

3.
Antioxidants (Basel) ; 11(11)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36358556

RESUMO

Oxidative stress is a harmful effect induced on the skin by polycyclic aromatic hydrocarbons (PAH), including benzo[a]pyrene (BaP) air pollutants. This effect is amplified by the additive damaging effect of the sun, especially through the UVA light component. Besides being one of the main compounds that make up air pollution, BaP can also be found in tar, tobacco smoke, and various foods. In addition to its direct carcinogenic potential, BaP can act as a photosensitizer absorbing sunlight in the UVA range and thus generating ROS and 8-hydroxy-2'-deoxyguanosine (8-OHdG). Fernblock® (FB) is an aqueous extract from the leaves of Polypodium leucotomos that has been proven to exert photoprotective and antioxidant effects on skin cells. In this study, we evaluate the potential of FB to prevent the damage induced by a combination of BaP and UVA light on human keratinocyte and mouse melanocyte cell lines (HaCaT and B16-F10, respectively). In particular, we have analyzed the capacity of FB to counteract the alterations caused on cellular morphology, viability, oxidative stress and melanogenic signaling pathway activation. Our data indicate that FB prevented cell damage and reduced oxidative stress and melanogenic signaling pathway activation caused by a combination of BaP and UVA light irradiation. Altogether, our findings support the fact that FB is able to prevent skin damage caused by the exposure to a combination of UVA and the air pollutant BaP.

4.
Mol Metab ; 60: 101496, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35405370

RESUMO

OBJECTIVE: Cancer metabolic reprogramming promotes resistance to therapies. In this study, we addressed the role of the Warburg effect in the resistance to photodynamic therapy (PDT) in skin squamous cell carcinoma (sSCC). Furthermore, we assessed the effect of metformin treatment, an antidiabetic type II drug that modulates metabolism, as adjuvant to PDT. METHODS: For that, we have used two human SCC cell lines: SCC13 and A431, called parental (P) and from these cell lines we have generated the corresponding PDT resistant cells (10GT). RESULTS: Here, we show that 10GT cells induced metabolic reprogramming to an enhanced aerobic glycolysis and reduced activity of oxidative phosphorylation, which could influence the response to PDT. This result was also confirmed in P and 10GT SCC13 tumors developed in mice. The treatment with metformin caused a reduction in aerobic glycolysis and an increase in oxidative phosphorylation in 10GT sSCC cells. Finally, the combination of metformin with PDT improved the cytotoxic effects on P and 10GT cells. The combined treatment induced an increase in the protoporphyrin IX production, in the reactive oxygen species generation and in the AMPK expression and produced the inhibition of AKT/mTOR pathway. The greater efficacy of combined treatments was also seen in vivo, in xenografts of P and 10GT SCC13 cells. CONCLUSIONS: Altogether, our results reveal that PDT resistance implies, at least partially, a metabolic reprogramming towards aerobic glycolysis that is prevented by metformin treatment. Therefore, metformin may constitute an excellent adjuvant for PDT in sSCC.


Assuntos
Antineoplásicos , Carcinoma de Células Escamosas , Metformina , Fotoquimioterapia , Animais , Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Fotoquimioterapia/métodos
5.
Antioxidants (Basel) ; 10(12)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34943064

RESUMO

Exposure to sun and especially to ultraviolet radiation (UVR) exerts well known detrimental effects on skin which are implicated in malignancy. UVR induces production of cyclobutane pyrimidine dimers (CPDs), immediately during exposure and even hours after the exposure, these latter being called dark-CPDs, as consequence of the effects of different reactive species that are formed. Fernblock® (FB), an aqueous extract of Polypodium leucotomos, has proven to have photoprotective and antioxidant effects on skin. The aim of our work was to investigate the potential photoprotective effect of FB against dark-CPD formation. Murine melanocytes (B16-F10) were exposed to UVA radiation and the production of dark-CPDs and different reactive oxygen and nitrogen species (ROS and RNS) was measured. Significant dark-CPD formation could be seen at 3 h after UVA irradiation, which was inhibited by the pre-treatment of cells with FB. Formation of nitric oxide, superoxide and peroxynitrite was increased after irradiation, consistent with the increased CPD formation. FB successfully reduced the production of these reactive species. Hence, these results show how dark-CPDs are formed in UVA irradiated melanocytes, and that FB acts as a potential antioxidant and ROS scavenger, preventing the DNA damage induced by sun exposure.

6.
Cancers (Basel) ; 13(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34830768

RESUMO

As an important component of tumor microenvironment, cancer-associated fibroblasts (CAFs) have lately gained prominence owing to their crucial role in the resistance to therapies. Photodynamic therapy (PDT) stands out as a successful therapeutic strategy to treat cutaneous squamous cell carcinoma. In this study, we demonstrate that the transforming growth factor ß1 (TGFß1) cytokine secreted by CAFs isolated from patients with SCC can drive resistance to PDT in epithelial SCC cells. To this end, CAFs obtained from patients with in situ cSCC were firstly characterized based on the expression levels of paramount markers as well as the levels of TGFß1 secreted to the extracellular environment. On a step forward, two established human cSCC cell lines (A431 and SCC13) were pre-treated with conditioned medium obtained from the selected CAF cultures. The CAF-derived conditioned medium effectively induced resistance to PDT in A431 cells through a reduction in the cell proliferation rate. This resistance effect was recapitulated by treating with recombinant TGFß1 and abolished by using the SB525334 TGFß1 receptor inhibitor, providing robust evidence of the role of TGFß1 secreted by CAFs in the development of resistance to PDT in this cell line. Conversely, higher levels of recombinant TGFß1 were needed to reduce cell proliferation in SCC13 cells, and no induction of resistance to PDT was observed in this cell line in response to CAF-derived conditioned medium. Interestingly, we probed that the comparatively higher intrinsic resistance to PDT of SCC13 cells was mediated by the elevated levels of TGFß1 secreted by this cell line. Our results point at this feature as a promising biomarker to predict both the suitability of PDT and the chances to optimize the treatment by targeting CAF-derived TGFß1 in the road to a more personalized treatment of particular cSCC tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA