Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7067, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923719

RESUMO

Neurons that participate in sensory processing often display "ON" responses, i.e., fire transiently at the onset of a stimulus. ON transients are widespread, perhaps universal to sensory coding, yet their function is not always well-understood. Here, we show that ON responses in the Drosophila thermosensory system extrapolate the trajectory of temperature change, priming escape behavior if unsafe thermal conditions are imminent. First, we show that second-order thermosensory projection neurons (TPN-IIIs) and their Lateral Horn targets (TLHONs), display ON responses to thermal stimuli, independent of direction of change (heating or cooling) and of absolute temperature. Instead, they track the rate of temperature change, with TLHONs firing exclusively to rapid changes (>0.2 °C/s). Next, we use connectomics to track TLHONs' output to descending neurons that control walking and escape, and modeling and genetic silencing to demonstrate how ON transients can flexibly amplify aversive responses to small thermal change. Our results suggest that, across sensory systems, ON transients may represent a general mechanism to systematically anticipate and respond to salient or dangerous conditions.


Assuntos
Drosophila , Neurônios , Animais , Neurônios/fisiologia , Sensação/fisiologia , Temperatura , Temperatura Baixa
2.
Curr Biol ; 32(18): 4079-4087.e4, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-35981537

RESUMO

Small poikilotherms such as the fruit fly Drosophila depend on absolute temperature measurements to identify external conditions that are above (hot) or below (cold) their preferred range and to react accordingly. Hot and cold temperatures have a different impact on fly activity and sleep, but the circuits and mechanisms that adjust behavior to specific thermal conditions are not well understood. Here, we use patch-clamp electrophysiology to show that internal thermosensory neurons located within the fly head capsule (the AC neurons1) function as a thermometer active in the hot range. ACs exhibit sustained firing rates that scale with absolute temperature-but only for temperatures above the fly's preferred ∼25°C (i.e., "hot" temperature). We identify ACs in the fly brain connectome and demonstrate that they target a single class of circadian neurons, the LPNs.2 LPNs receive excitatory drive from ACs and respond robustly to hot stimuli, but their responses do not exclusively rely on ACs. Instead, LPNs receive independent drive from thermosensory neurons of the fly antenna via a new class of second-order projection neurons (TPN-IV). Finally, we show that silencing LPNs blocks the restructuring of daytime "siesta" sleep, which normally occurs in response to persistent heat. Our previous work described a distinct thermometer circuit for cold temperature.3 Together, the results demonstrate that the fly nervous system separately encodes and relays absolute hot and cold temperature information, show how patterns of sleep and activity can be adapted to specific temperature conditions, and illustrate how persistent drive from sensory pathways can impact behavior on extended temporal scales.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Ritmo Circadiano , Drosophila/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Temperatura Alta , Temperatura , Termômetros
3.
Curr Biol ; 32(6): 1362-1375.e8, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35176227

RESUMO

Animals have evolved a variety of behaviors to cope with adverse environmental conditions. Similar to other insects, the fly, Drosophila melanogaster, responds to sustained cold by reducing its metabolic rate and arresting its reproduction. Here, we show that a subset of dorsal neurons (DN3s) that express the neuropeptide allatostatin C (AstC) facilitates recovery from cold-induced reproductive dormancy. The activity of AstC-expressing DN3s, as well as AstC peptide levels, are suppressed by cold. Cold temperature also impacts AstC levels in other Drosophila species and mosquitoes, Aedes aegypti, and Anopheles stephensi. The stimulatory effect of AstC on egg production is mediated by cholinergic AstC-R2 neurons. Our results demonstrate that DN3s coordinate female reproductive capacity with environmental temperature via AstC signaling. AstC/AstC-R2 is conserved across many insect species and their role in regulating female reproductive capacity makes them an ideal target for controlling the population of agricultural pests and human disease vectors.


Assuntos
Drosophila melanogaster , Neuropeptídeos , Animais , Temperatura Baixa , Drosophila melanogaster/fisiologia , Feminino , Mosquitos Vetores , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Reprodução , Temperatura
4.
Curr Biol ; 31(24): R1570-R1573, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34932964

RESUMO

Bitter taste signals a potentially toxic food that should be avoided. A new study shows that taste neurons in Drosophila produce distinct responses after a bitter sip. A bitter aftertaste may help the fly make wise food choices.


Assuntos
Percepção Gustatória , Paladar , Animais , Biologia , Drosophila/fisiologia , Preferências Alimentares , Paladar/fisiologia
5.
Nat Commun ; 12(1): 2044, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824330

RESUMO

Simple innate behavior is often described as hard-wired and largely inflexible. Here, we show that the avoidance of hot temperature, a simple innate behavior, contains unexpected plasticity in Drosophila. First, we demonstrate that hot receptor neurons of the antenna and their molecular heat sensor, Gr28B.d, are essential for flies to produce escape turns away from heat. High-resolution fly tracking combined with a 3D simulation of the thermal environment shows that, in steep thermal gradients, the direction of escape turns is determined by minute temperature differences between the antennae (0.1°-1 °C). In parallel, live calcium imaging confirms that such small stimuli reliably activate both peripheral thermosensory neurons and central circuits. Next, based on our measurements, we evolve a fly/vehicle model with two symmetrical sensors and motors (a "Braitenberg vehicle") which closely approximates basic fly thermotaxis. Critical differences between real flies and the hard-wired vehicle reveal that fly heat avoidance involves decision-making, relies on rapid learning, and is robust to new conditions, features generally associated with more complex behavior.


Assuntos
Drosophila melanogaster/fisiologia , Resposta Táctica/fisiologia , Animais , Comportamento Animal , Comportamento de Escolha , Drosophila melanogaster/genética , Imageamento Tridimensional , Sensação Térmica/fisiologia
6.
Curr Biol ; 31(9): 1988-1994.e5, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33667373

RESUMO

Catnip (Nepeta cataria) is a common garden herb well known for its euphoric and hallucinogenic effects on domestic cats,1-3 for its medicinal properties,4,5 as well as for its powerful repellent action on insects.6,7 Catnip extracts have been proposed as a natural alternative to synthetic insect repellents, such as N,N-diethyl-3-methylbenzamide (DEET),8,9 but how catnip triggers aversion in insects is not known. Here, we show that, both in Drosophila melanogaster flies and Aedes aegypti mosquitoes, the major mediator of catnip repellency is the widely conserved chemical irritant receptor TRPA1. In vitro, both catnip extract and its active ingredient nepetalactone can directly activate fly and mosquito TRPA1. In vivo, D. melanogaster and Ae. aegypti TRPA1 mutants are no longer repelled by catnip and nepetalactone. Interestingly, our data show that some, but not all, fly and mosquito TRPA1 variants are catnip targets. Moreover, unlike the broad TRPA1 agonist allyl isothiocyanate (AITC) (an active ingredient of tear gas and wasabi), catnip does not activate human TRPA1. Our results support the use of catnip and nepetalactone as insect-selective irritants and suggest that, despite TRPA1's broad conservation, insect TRPA1 can be targeted for the development of safe repellents.


Assuntos
Aedes , Repelentes de Insetos , Nepeta , Aedes/genética , Animais , Gatos , DEET/farmacologia , Drosophila melanogaster/genética , Repelentes de Insetos/farmacologia , Irritantes
7.
Curr Biol ; 30(12): 2275-2288.e5, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32442464

RESUMO

Animals react to environmental changes over timescales ranging from seconds to days and weeks. An important question is how sensory stimuli are parsed into neural signals operating over such diverse temporal scales. Here, we uncover a specialized circuit, from sensory neurons to higher brain centers, that processes information about long-lasting, absolute cold temperature in Drosophila. We identify second-order thermosensory projection neurons (TPN-IIs) exhibiting sustained firing that scales with absolute temperature. Strikingly, this activity only appears below the species-specific, preferred temperature for D. melanogaster (∼25°C). We trace the inputs and outputs of TPN-IIs and find that they are embedded in a cold "thermometer" circuit that provides powerful and persistent inhibition to brain centers involved in regulating sleep and activity. Our results demonstrate that the fly nervous system selectively encodes and relays absolute temperature information and illustrate a sensory mechanism that allows animals to adapt behavior specifically to cold conditions on the timescale of hours to days.


Assuntos
Temperatura Baixa , Drosophila melanogaster/fisiologia , Células Receptoras Sensoriais/fisiologia , Sensação Térmica/fisiologia , Animais , Encéfalo/fisiologia , Atividade Motora/fisiologia , Sono/fisiologia
8.
Nat Neurosci ; 20(12): 1686-1693, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29184198

RESUMO

All animals must detect noxious stimuli to initiate protective behavior, but the evolutionary origin of nociceptive systems is not well understood. Here we show that noxious heat and irritant chemicals elicit robust escape behaviors in the planarian Schmidtea mediterranea and that the conserved ion channel TRPA1 is required for these responses. TRPA1-mutant Drosophila flies are also defective in noxious-heat responses. We find that either planarian or human TRPA1 can restore noxious-heat avoidance to TRPA1-mutant Drosophila, although neither is directly activated by heat. Instead, our data suggest that TRPA1 activation is mediated by H2O2 and reactive oxygen species, early markers of tissue damage rapidly produced as a result of heat exposure. Together, our data reveal a core function for TRPA1 in noxious heat transduction, demonstrate its conservation from planarians to humans, and imply that animal nociceptive systems may share a common ancestry, tracing back to a progenitor that lived more than 500 million years ago.


Assuntos
Nociceptividade/fisiologia , Planárias/fisiologia , Espécies Reativas de Oxigênio/farmacologia , Canal de Cátion TRPA1/efeitos dos fármacos , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Drosophila , Proteínas de Drosophila/genética , Peróxido de Hidrogênio/farmacologia , Canais Iônicos , Nociceptividade/efeitos dos fármacos , Técnicas de Patch-Clamp , Interferência de RNA , Canal de Cátion TRPA1/genética
9.
Curr Biol ; 27(15): 2381-2388.e4, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28736172

RESUMO

The Drosophila antenna contains receptor neurons for mechanical, olfactory, thermal, and humidity stimuli. Neurons expressing the ionotropic receptor IR40a have been implicated in the selection of an appropriate humidity range [1, 2], but although previous work indicates that insect hygroreceptors may be made up by a "triad" of neurons (with a dry-, a cold-, and a humid-air-responding cell [3]), IR40a expression included only cold- and dry-air cells. Here, we report the identification of the humid-responding neuron that completes the hygrosensory triad in the Drosophila antenna. This cell type expresses the Ir68a gene, and Ir68a mutation perturbs humidity preference. Next, we follow the projections of Ir68a neurons to the brain and show that they form a distinct glomerulus in the posterior antennal lobe (PAL). In the PAL, a simple sensory map represents related features of the external environment with adjacent "hot," "cold," "dry," and "humid" glomeruli-an organization that allows for both unique and combinatorial sampling by central relay neurons. Indeed, flies avoided dry heat more robustly than humid heat, and this modulation was abolished by silencing of dry-air receptors. Consistently, at least one projection neuron type received direct synaptic input from both temperature and dry-air glomeruli. Our results further our understanding of humidity sensing in the Drosophila antenna, uncover a neuronal substrate for early sensory integration of temperature and humidity in the brain, and illustrate the logic of how ethologically relevant combinations of sensory cues can be processed together to produce adaptive behavioral responses.


Assuntos
Drosophila melanogaster/fisiologia , Sensação Térmica , Animais , Encéfalo/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Umidade , Temperatura
10.
Curr Biol ; 26(10): 1352-8, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27161501

RESUMO

Environmental humidity influences the fitness and geographic distribution of all animals [1]. Insects in particular use humidity cues to navigate the environment, and previous work suggests the existence of specific sensory mechanisms to detect favorable humidity ranges [2-5]. Yet, the molecular and cellular basis of humidity sensing (hygrosensation) remains poorly understood. Here we describe genes and neurons necessary for hygrosensation in the vinegar fly Drosophila melanogaster. We find that members of the Drosophila genus display species-specific humidity preferences related to conditions in their native habitats. Using a simple behavioral assay, we find that the ionotropic receptors IR40a, IR93a, and IR25a are all required for humidity preference in D. melanogaster. Yet, whereas IR40a is selectively required for hygrosensory responses, IR93a and IR25a mediate both humidity and temperature preference. Consistent with this, the expression of IR93a and IR25a includes thermosensory neurons of the arista. In contrast, IR40a is excluded from the arista but is expressed (and required) in specialized neurons innervating pore-less sensilla of the sacculus, a unique invagination of the third antennal segment. Indeed, calcium imaging showed that IR40a neurons directly respond to changes in humidity, and IR40a knockdown or IR93a mutation reduced their responses to stimuli. Taken together, our results suggest that the preference for a specific humidity range depends on specialized sacculus neurons, and that the processing of environmental humidity can happen largely in parallel to that of temperature.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Umidade , Receptores Ionotrópicos de Glutamato/genética , Sensação , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Masculino , Neurônios/metabolismo , Receptores Ionotrópicos de Glutamato/metabolismo , Sensilas/metabolismo
11.
Nat Commun ; 6: 10024, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26635273

RESUMO

Determining the pattern of activity of individual connections within a neural circuit could provide insights into the computational processes that underlie brain function. Here, we develop new strategies to label active synapses by trans-synaptic fluorescence complementation in Drosophila. First, we demonstrate that a synaptobrevin-GRASP chimera functions as a powerful activity-dependent marker for synapses in vivo. Next, we create cyan and yellow variants, achieving activity-dependent, multi-colour fluorescence reconstitution across synapses (X-RASP). Our system allows for the first time retrospective labelling of synapses (rather than whole neurons) based on their activity, in multiple colours, in the same animal. As individual synapses often act as computational units in the brain, our method will promote the design of experiments that are not possible using existing techniques. Moreover, our strategies are easily adaptable to circuit mapping in any genetic system.


Assuntos
Drosophila/fisiologia , Neurônios/química , Coloração e Rotulagem/métodos , Sinapses/química , Animais , Drosophila/química , Fluorescência , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Neurônios/fisiologia , Coloração e Rotulagem/instrumentação , Sinapses/fisiologia
12.
Elife ; 42015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26350701

RESUMO

Two signalling pathways work together to reshape olfactory responses so that hungry flies are attracted to food sources they would otherwise ignore.


Assuntos
Comportamento Apetitivo , Drosophila melanogaster/fisiologia , Percepção Olfatória , Inanição , Animais
13.
Nature ; 519(7543): 358-61, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25739506

RESUMO

In Drosophila, rapid temperature changes are detected at the periphery by dedicated receptors forming a simple sensory map for hot and cold in the brain. However, flies show a host of complex innate and learned responses to temperature, indicating that they are able to extract a range of information from this simple input. Here we define the anatomical and physiological repertoire for temperature representation in the Drosophila brain. First, we use a photolabelling strategy to trace the connections that relay peripheral thermosensory information to higher brain centres, and show that they largely converge onto three target regions: the mushroom body, the lateral horn (both of which are well known centres for sensory processing) and the posterior lateral protocerebrum, a region we now define as a major site of thermosensory representation. Next, using in vivo calcium imaging, we describe the thermosensory projection neurons selectively activated by hot or cold stimuli. Fast-adapting neurons display transient ON and OFF responses and track rapid temperature shifts remarkably well, while slow-adapting cell responses better reflect the magnitude of simple thermal changes. Unexpectedly, we also find a population of broadly tuned cells that respond to both heating and cooling, and show that they are required for normal behavioural avoidance of both hot and cold in a simple two-choice temperature preference assay. Taken together, our results uncover a coordinated ensemble of neural responses to temperature in the Drosophila brain, demonstrate that a broadly tuned thermal line contributes to rapid avoidance behaviour, and illustrate how stimulus quality, temporal structure, and intensity can be extracted from a simple glomerular map at a single synaptic station.


Assuntos
Encéfalo/fisiologia , Drosophila melanogaster/fisiologia , Vias Neurais , Temperatura , Sensação Térmica/fisiologia , Animais , Encéfalo/anatomia & histologia , Encéfalo/citologia , Mapeamento Encefálico , Cálcio/análise , Cálcio/metabolismo , Drosophila melanogaster/citologia , Corpos Pedunculados/inervação , Neurônios/metabolismo , Sinapses/metabolismo , Termorreceptores/metabolismo , Fatores de Tempo
14.
Neuron ; 81(3): 603-615, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24507194

RESUMO

Many visual animals have innate preferences for particular wavelengths of light, which can be modified by learning. Drosophila's preference for UV over visible light requires UV-sensing R7 photoreceptors and specific wide-field amacrine neurons called Dm8. Here we identify three types of medulla projection neurons downstream of R7 and Dm8 and show that selectively inactivating one of them (Tm5c) abolishes UV preference. Using a modified GRASP method to probe synaptic connections at the single-cell level, we reveal that each Dm8 neuron forms multiple synaptic contacts with Tm5c in the center of Dm8's dendritic field but sparse connections in the periphery. By single-cell transcript profiling and RNAi-mediated knockdown, we determine that Tm5c uses the kainate receptor Clumsy to receive excitatory glutamate input from Dm8. We conclude that R7s→Dm8→Tm5c form a hard-wired glutamatergic circuit that mediates UV preference by pooling ∼16 R7 signals for transfer to the lobula, a higher visual center.


Assuntos
Visão de Cores/fisiologia , Transdução de Sinal Luminoso/fisiologia , Rede Nervosa/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Receptores de Glutamato/metabolismo , Vias Visuais/citologia , Análise de Variância , Animais , Animais Geneticamente Modificados , Mapeamento Encefálico , Visão de Cores/efeitos da radiação , Drosophila , Proteínas de Drosophila/genética , Regulação da Expressão Gênica/fisiologia , Regulação da Expressão Gênica/efeitos da radiação , Proteínas de Fluorescência Verde/genética , Transdução de Sinal Luminoso/efeitos da radiação , Rede Nervosa/efeitos da radiação , Optometria , Células Fotorreceptoras de Invertebrados/classificação , Interferência de RNA/fisiologia , Receptores de Glutamato/genética , Raios Ultravioleta , Vias Visuais/fisiologia , Vias Visuais/efeitos da radiação
15.
Cell ; 144(4): 614-24, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21335241

RESUMO

Thermosensation is an indispensable sensory modality. Here, we study temperature coding in Drosophila, and show that temperature is represented by a spatial map of activity in the brain. First, we identify TRP channels that function in the fly antenna to mediate the detection of cold stimuli. Next, we identify the hot-sensing neurons and show that hot and cold antennal receptors project onto distinct, but adjacent glomeruli in the Proximal-Antennal-Protocerebrum (PAP) forming a thermotopic map in the brain. We use two-photon imaging to reveal the functional segregation of hot and cold responses in the PAP, and show that silencing the hot- or cold-sensing neurons produces animals with distinct and discrete deficits in their behavioral responses to thermal stimuli. Together, these results demonstrate that dedicated populations of cells orchestrate behavioral responses to different temperature stimuli, and reveal a labeled-line logic for the coding of temperature information in the brain.


Assuntos
Drosophila/fisiologia , Animais , Encéfalo/fisiologia , Temperatura Baixa , Proteínas de Drosophila/metabolismo , Temperatura Alta , Células Receptoras Sensoriais/fisiologia , Canais de Cátion TRPP/metabolismo , Sensação Térmica
16.
Nat Cell Biol ; 11(7): 890-5, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19525935

RESUMO

Epidermal injury initiates a cascade of inflammation, epithelial remodelling and integument repair at wound sites. The regeneration of the extracellular barrier and damaged tissue repair rely on the precise orchestration of epithelial responses triggered by the injury. Grainy head (Grh) transcription factors induce gene expression to crosslink the extracellular barrier in wounded flies and mice. However, the activation mechanisms and functions of Grh factors in re-epithelialization remain unknown. Here we identify stitcher (stit), a new Grh target in Drosophila melanogaster. stit encodes a Ret-family receptor tyrosine kinase required for efficient epidermal wound healing. Live imaging analysis reveals that Stit promotes actin cable assembly during wound re-epithelialization. Stit activation also induces extracellular signal-regulated kinase (ERK) phosphorylation along with the Grh-dependent expression of stit and barrier repair genes at the wound sites. The transcriptional stimulation of stit on injury triggers a positive feedback loop increasing the magnitude of epithelial responses. Thus, Stit activation upon wounding coordinates cytoskeletal rearrangements and the level of Grh-mediated transcriptional wound responses.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/enzimologia , Epiderme/lesões , Epiderme/metabolismo , Proteínas Tirosina Quinases/fisiologia , Fatores de Transcrição/metabolismo , Animais , Western Blotting , Células Cultivadas , Proteínas de Drosophila/genética , Embrião não Mamífero , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Imuno-Histoquímica , Imunoprecipitação , Fosforilação , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo
17.
Genes Dev ; 18(17): 2161-71, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15342493

RESUMO

Slit proteins steer the migration of many cell types through their binding to Robo receptors, but how Robo controls cell motility is not clear. We describe the functional analysis of vilse, a Drosophila gene required for Robo repulsion in epithelial cells and axons. Vilse defines a conserved family of RhoGAPs (Rho GTPase-activating proteins), with representatives in flies and vertebrates. The phenotypes of vilse mutants resemble the tracheal and axonal phenotypes of Slit and Robo mutants at the CNS midline. Dosage-sensitive genetic interactions between vilse, slit, and robo mutants suggest that vilse is a component of robo signaling. Moreover, overexpression of Vilse in the trachea of robo mutants ameliorates the phenotypes of robo, indicating that Vilse acts downstream of Robo to mediate midline repulsion. Vilse and its human homolog bind directly to the intracellular domains of the corresponding Robo receptors and promote the hydrolysis of RacGTP and, less efficiently, of Cdc42GTP. These results together with genetic interaction experiments with robo, vilse, and rac mutants suggest a mechanism whereby Robo repulsion is mediated by the localized inactivation of Rac through Vilse.


Assuntos
Axônios/metabolismo , Movimento Celular/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/metabolismo , Animais , Axônios/fisiologia , Southern Blotting , Sistema Nervoso Central/fisiologia , Primers do DNA , Drosophila , Proteínas de Drosophila/fisiologia , Células Epiteliais/fisiologia , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/fisiologia , Glutationa Transferase , Hibridização In Situ , Mutação/genética , Proteínas do Tecido Nervoso/fisiologia , Receptores Imunológicos/fisiologia , Análise de Sequência de DNA , Transdução de Sinais/fisiologia , Técnicas do Sistema de Duplo-Híbrido , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas Roundabout
18.
Development ; 131(15): 3605-14, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15229181

RESUMO

EGF-receptor ligands act as chemoattractants for migrating epithelial cells during organogenesis and wound healing. We present evidence that Rhomboid 3/EGF signalling, which originates from the midline of the Drosophila ventral nerve cord, repels tracheal ganglionic branches and prevents them from crossing it. rho3 acts independently from the main midline repellent Slit, and originates from a different sub-population of midline cells: the VUM neurons. Expression of dominant-negative Egfr or Ras induces midline crosses, whereas activation of the Egfr or Ras in the leading cell of the ganglionic branch can induce premature turns away from the midline. This suggests that the level of Egfr intracellular signalling, rather than the asymmetric activation of the receptor on the cell surface, is an important determinant in ganglionic branch repulsion. We propose that Egfr activation provides a necessary switch for the interpretation of a yet unknown repellent function of the midline.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Proteínas de Membrana/metabolismo , Morfogênese , Proteínas do Tecido Nervoso/metabolismo , Serina Endopeptidases/metabolismo , Transdução de Sinais , Animais , Padronização Corporal , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/genética , Proteínas do Olho/metabolismo , Hibridização In Situ , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Repressoras/metabolismo , Serina Endopeptidases/genética , Traqueia/embriologia , Proteínas ras/metabolismo
19.
Proc Natl Acad Sci U S A ; 99(19): 12208-13, 2002 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-12221285

RESUMO

Epidermal growth factor receptor (EGFr) is a key mediator of cell communication during animal development and homeostasis. In Drosophila, the signaling event is commonly regulated by the polytopic membrane protein Rhomboid (RHO), which mediates the proteolytic activation of EGFr ligands, allowing the secretion of the active signal. Until very recently, the biochemical function of RHO had remained elusive. It is now believed that Drosophila RHO is the founder member of a previously undescribed family of serine proteases, and that it could be directly responsible for the unusual, intramembranous cleavage of EGFr ligands. Here we show that the function of RHO is conserved in Gram-negative bacteria. AarA, a Providencia stuartii RHO-related protein, is active in Drosophila on the fly EGFr ligands. Vice versa, Drosophila RHO-1 can effectively rescue the bacterium's ability to produce or release the signal that activates density-dependent gene regulation (or quorum sensing). This study provides the first evidence that prokaryotic and eukaryotic RHOs could have a conserved role in cell communication and that their biochemical properties could be more similar than previously anticipated.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência Conservada , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Evolução Molecular , Humanos , Ligantes , Modelos Biológicos , Dados de Sequência Molecular , Filogenia , Providencia/genética , Providencia/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Homologia de Sequência de Aminoácidos , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA