Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(28): 6866-6875, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38976651

RESUMO

Ammonium nitrate in aqueous solution was investigated with synchrotron radiation based photoelectron spectroscopy using two types of liquid jet nozzles. Electron emission from a cylindrical microjet of aqueous ammonium nitrate solution was measured at two different angles relative to the horizontal polarization of the incident synchrotron radiation, 90° and 54.7° (the "magic angle"), for a range of photon energies (470-530 eV). We obtained ß parameter values as a function of photon energy, based on a normalization procedure relying on simulations of background intensity with the SESSA (Simulation of Electron Spectra for Surface Analysis) package. The ß values are similar to literature data for O 1s ionization of liquid water, and the ß value of N 1s from NH4+ is higher than that for NO3-, by ≈0.1. The measurements also show that the photoelectron signal from NO3- exhibits a photon energy dependent cross section variation not observed in NH4+. Additional measurements using a flat jet nozzle found that the ammonium and nitrate peak area ratio was unaffected by changes in the takeoff angle, indicating a similar distribution of both ammonium and nitrate in the surface region.

2.
J Am Chem Soc ; 145(31): 17042-17055, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37524069

RESUMO

New synthetic hybrid materials and their increasing complexity have placed growing demands on crystal growth for single-crystal X-ray diffraction analysis. Unfortunately, not all chemical systems are conducive to the isolation of single crystals for traditional characterization. Here, small-molecule serial femtosecond crystallography (smSFX) at atomic resolution (0.833 Å) is employed to characterize microcrystalline silver n-alkanethiolates with various alkyl chain lengths at X-ray free electron laser facilities, resolving long-standing controversies regarding the atomic connectivity and odd-even effects of layer stacking. smSFX provides high-quality crystal structures directly from the powder of the true unknowns, a capability that is particularly useful for systems having notoriously small or defective crystals. We present crystal structures of silver n-butanethiolate (C4), silver n-hexanethiolate (C6), and silver n-nonanethiolate (C9). We show that an odd-even effect originates from the orientation of the terminal methyl group and its role in packing efficiency. We also propose a secondary odd-even effect involving multiple mosaic blocks in the crystals containing even-numbered chains, identified by selected-area electron diffraction measurements. We conclude with a discussion of the merits of the synthetic preparation for the preparation of microdiffraction specimens and compare the long-range order in these crystals to that of self-assembled monolayers.

3.
Astrobiology ; 23(3): 245-268, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36577046

RESUMO

Halite (NaCl mineral) has exhibited the potential to preserve microorganisms for millions of years on Earth. This mineral was also identified on Mars and in meteorites. In this study, we investigated the potential of halite crystals to protect microbial life-forms on the surface of an airless body (e.g., meteorite), for instance, during a lithopanspermia process (interplanetary travel step) in the early Solar System. To investigate the effect of the radiation of the young Sun on microorganisms, we performed extensive simulation experiments by employing a synchrotron facility. We focused on two exposure conditions: vacuum (low Earth orbit, 10-4 Pa) and vacuum-ultraviolet (VUV) radiation (range 57.6-124 nm, flux 7.14 W/m2), with the latter representing an extreme scenario with high VUV fluxes comparable to the amount of radiation of a stellar superflare from the young Sun. The stellar VUV parameters were estimated by using the very well-studied solar analog of the young Sun, κ1 Cet. To evaluate the protective effects of halite, we entrapped a halophilic archaeon (Haloferax volcanii) and a non-halophilic bacterium (Deinococcus radiodurans) in laboratory-grown halite. Control groups were cells entrapped in salt crystals (mixtures of different salts and NaCl) and non-trapped (naked) cells, respectively. All groups were exposed either to vacuum alone or to vacuum plus VUV. Our results demonstrate that halite can serve as protection against vacuum and VUV radiation, regardless of the type of microorganism. In addition, we found that the protection is higher than provided by crystals obtained from mixtures of salts. This extends the protective effects of halite documented in previous studies and reinforces the possibility to consider the crystals of this mineral as potential preservation structures in airless bodies or as vehicles for the interplanetary transfer of microorganisms.


Assuntos
Cloreto de Sódio , Raios Ultravioleta , Raios Ultravioleta/efeitos adversos , Cloreto de Sódio/química , Sais , Vácuo , Minerais
4.
J Phys Chem C Nanomater Interfaces ; 126(33): 14116-14124, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36060283

RESUMO

Hydrogenated graphene (H-Gr) is an extensively studied system not only because of its capabilities as a simplified model system for hydrocarbon chemistry but also because hydrogenation is a compelling method for Gr functionalization. However, knowledge of how H-Gr interacts with molecules at higher pressures and ambient conditions is lacking. Here we present experimental and theoretical evidence that room temperature O2 exposure at millibar pressures leads to preferential removal of H dimers on H-functionalized graphene, leaving H clusters on the surface. Our density functional theory (DFT) analysis shows that the removal of H dimers is the result of water or hydrogen peroxide formation. For water formation, we show that the two H atoms in the dimer motif attack one end of the physisorbed O2 molecule. Moreover, by comparing the reaction pathways in a vacuum with the ones on free-standing graphene and on the graphene/Ir(111) system, we find that the main role of graphene is to arrange the H atoms in geometrical positions, which facilitates the activation of the O=O double bond.

5.
Phys Chem Chem Phys ; 24(16): 9236-9246, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35388844

RESUMO

The combination of a reducible transition metal oxide and a noble metal such as Pt often leads to active low-temperature catalysts for the preferential oxidation of CO in excess H2 gas (PROX reaction). While CO oxidation has been investigated for such systems in model studies, the added influence of hydrogen gas, representative of PROX, remains less explored. Herein, we use ambient pressure scanning tunneling microscopy and ambient pressure X-ray photoelectron spectroscopy on a CoOx/Pt(111) planar model catalyst to analyze the active phase and the adsorbed species at the CoOx/Pt(111) interface under atmospheres of CO and O2 with a varying partial pressure of H2 gas. By following the evolution of the Co oxidation state as the catalyst is brought to a reaction temperature of above 150 °C, we determine that the active state is characterized by the transformation from planar CoO with Co in the 2+ state to a mixed Co2+/Co3+ phase at the temperature where CO2 production is first observed. Furthermore, our spectroscopy observations of the surface species suggest a reaction pathway for CO oxidation, proceeding from CO exclusively adsorbed on Co2+ sites reacting with the lattice O from the oxide. Under steady state CO oxidation conditions (CO/O2), the mixed oxide phase is replenished from oxygen incorporating into cobalt oxide nanoislands. In CO/O2/H2, however, the onset of the active Co2+/Co3+ phase formation is surprisingly sensitive to the H2 pressure, which we explain by the formation of several possible hydroxylated intermediate phases that expose both Co2+ and Co3+. This variation, however, has no influence on the temperature where CO oxidation is observed. Our study points to the general importance of a dynamic reducibility window of cobalt oxide, which is influenced by hydroxylation, and the bonding strength of CO to the reduced oxide phase as important parameters for the activity of the system.

6.
Nat Commun ; 12(1): 6117, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675205

RESUMO

Heterogeneous catalyst surfaces are dynamic entities that respond rapidly to changes in their local gas environment, and the dynamics of the response is a decisive factor for the catalysts' action and activity. Few probes are able to map catalyst structure and local gas environment simultaneously under reaction conditions at the timescales of the dynamic changes. Here we use the CO oxidation reaction and a Pd(100) model catalyst to demonstrate how such studies can be performed by time-resolved ambient pressure photoelectron spectroscopy. Central elements of the method are cyclic gas pulsing and software-based event-averaging by image recognition of spectral features. A key finding is that at 3.2 mbar total pressure a metallic, predominantly CO-covered metallic surface turns highly active for a few seconds once the O2:CO ratio becomes high enough to lift the CO poisoning effect before mass transport limitations triggers formation of a √5 oxide.

7.
J Synchrotron Radiat ; 28(Pt 2): 624-636, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33650575

RESUMO

HIPPIE is a soft X-ray beamline on the 3 GeV electron storage ring of the MAX IV Laboratory, equipped with a novel ambient-pressure X-ray photoelectron spectroscopy (APXPS) instrument. The endstation is dedicated to performing in situ and operando X-ray photoelectron spectroscopy experiments in the presence of a controlled gaseous atmosphere at pressures up to 30 mbar [1 mbar = 100 Pa] as well as under ultra-high-vacuum conditions. The photon energy range is 250 to 2200 eV in planar polarization and with photon fluxes >1012 photons s-1 (500 mA ring current) at a resolving power of greater than 10000 and up to a maximum of 32000. The endstation currently provides two sample environments: a catalysis cell and an electrochemical/liquid cell. The former allows APXPS measurements of solid samples in the presence of a gaseous atmosphere (with a mixture of up to eight gases and a vapour of a liquid) and simultaneous analysis of the inlet/outlet gas composition by online mass spectrometry. The latter is a more versatile setup primarily designed for APXPS at the solid-liquid (dip-and-pull setup) or liquid-gas (liquid microjet) interfaces under full electrochemical control, and it can also be used as an open port for ad hoc-designed non-standard APXPS experiments with different sample environments. The catalysis cell can be further equipped with an IR reflection-absorption spectrometer, allowing for simultaneous APXPS and IR spectroscopy of the samples. The endstation is set up to easily accommodate further sample environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA