Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
J Mol Biol ; 403(2): 299-312, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-20804768

RESUMO

Much has been learned about the folding of proteins from comparative studies of the folding of proteins that are related in sequence and structure. Observation of the effects of mutations helps account for sequence-specific properties and large variations in folding rates observed in homologous proteins, which are not explained by structure-derived descriptions. The folding kinetics of variants of a ß-stranded protein, toxin α from Naja nigricollis, depends on the length of their loop lk1. These proteins, named Tox60, Tox61, and Tox62, contain four disulfide bonds. We show that their oxidative refolding pathways are similar. Differences in these pathways are restricted to the last step of the reaction, that is, the closure of the last disulfide. At this step, two species of three-disulfide intermediates are observed: intermediate C lacking the B3 disulfide and intermediate D lacking the B2 disulfide. Surprisingly, D is the most productive intermediate for Tox61 despite the low accessibility of its free cysteines. However, in the case of Tox62, its conversion efficiency drops by 2 orders of magnitude and C becomes the most productive intermediate. NMR was used in order to study the structural dynamics of each of these intermediates. Both three-disulfide intermediates of Tox61 exist in two forms, exchanging on the 1- to 100-ms scale. One of these forms is structurally very close to the native Tox61, whereas the other is always significantly more flexible on a picosecond-to-nanosecond timescale. On the other hand, in the case of Tox62, the three-disulfide intermediates only show a native-like structure. The higher conformational heterogeneity of Tox61 intermediate D allows an increased accessibility of its free cysteines to oxidative agents, which explains its faster native disulfide formation. Thus, residue deletion in loop lk1 probably abrogates stabilizing intramolecular interactions, creates conformational heterogeneity, and increases the folding rate of Tox60 and Tox61 compared to Tox62.


Assuntos
Venenos Elapídicos/química , Venenos Elapídicos/metabolismo , Elapidae , Dobramento de Proteína , Sequência de Aminoácidos , Animais , Dissulfetos/metabolismo , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Alinhamento de Sequência
3.
Proc Natl Acad Sci U S A ; 106(21): 8507-12, 2009 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-19433794

RESUMO

In many bacterial viruses and in certain animal viruses, the double-stranded DNA genome enters and exits the capsid through a portal gatekeeper. We report a pseudoatomic structure of a complete portal system. The bacteriophage SPP1 gatekeeper is composed of dodecamers of the portal protein gp6, the adaptor gp15, and the stopper gp16. The solution structures of gp15 and gp16 were determined by NMR. They were then docked together with the X-ray structure of gp6 into the electron density of the approximately 1-MDa SPP1 portal complex purified from DNA-filled capsids. The resulting structure reveals that gatekeeper assembly is accompanied by a large rearrangement of the gp15 structure and by folding of a flexible loop of gp16 to form an intersubunit parallel beta-sheet that closes the portal channel. This stopper system prevents release of packaged DNA. Disulfide cross-linking between beta-strands of the stopper blocks the key conformational changes that control genome ejection from the virus at the beginning of host infection.


Assuntos
Bacteriófagos/química , Bacteriófagos/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Bacteriófagos/genética , Bacteriófagos/ultraestrutura , Transporte Biológico , Microscopia Eletrônica , Modelos Moleculares , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Virais/genética , Proteínas Virais/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA