Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 410: 135395, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696781

RESUMO

Ferulic acid displays poor thermal resistance during extrusion and compression moulding, slow 2,2-diphenyl-1-picrylhydrazyl (DPPH) reaction kinetics, and undetected release from polylactide (PLA) and polyhydroxyalkanoates (PHA)-based films into polar media. Thus, in this study, a ferulic acid derivative Bis-O-dihydroferuloyl-1,4-butanediol (BDF) was used as an active additive (up to 40 w%) in PLA, poly(3-hydroxybutyrate) (PHB), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) matrices to produce blends by extrusion. These blends were then used to prepare films by solvent casting. The BDF displayed good stability with 86-93% retention. The release kinetics in Food Simulant A revealed higher BDF release amounts (1.16-3.2%) for PHA-based films as compared to PLA. The BDF displayed faster DPPH reaction kinetics as compared to ferulic acid. The PHA-based films containing BDF displayed > 80% of DPPH inhibition. The growth of crystals inside polymer matrix had a nucleation effect which reduced the glass transition temperature of the films.


Assuntos
Antioxidantes , Poli-Hidroxialcanoatos , Cinética , Poliésteres/química , Poli-Hidroxialcanoatos/química
2.
Polymers (Basel) ; 14(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458314

RESUMO

Poly-ß-hydroxybutyrate (PHB) is a very common bio-based and biocompatible polymer obtained from the fermentation of soil bacteria. Due to its important crystallinity, PHB is extremely brittle in nature, which results in poor mechanical properties with low extension at the break. To overcome these issues, the crystallinity of PHB can be reduced by blending with plasticizers such as ferulic acid derivatives, e.g., bis-O-dihydroferuloyl-1,4-butanediol (BDF). The degradation potential of polymer blends of PHB containing various percentages (0, 5, 10, 20, and 40 w%) of BDF was investigated through chemical, enzymatic and fungal pathways. Chemical degradation revealed that, in 0.25 M NaOH solution, the presence of BDF in the blend was necessary to carry out the degradation, which increased as the BDF percentage increased. Whereas no enzymatic degradation could be achieved in the tested conditions. Fungal degradation was achieved with a strain isolated from the soil and monitored through imagery processing. Similar to the chemical degradation, higher BDF content resulted in higher degradation by the fungus.

3.
Bioengineering (Basel) ; 9(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35324789

RESUMO

Poly(3-hydroxybutyrate), PHB, has gathered a lot of attention for its promising properties-in particular its biobased nature and high biodegradability. Although PHB is prime candidate for the packaging industry, the applications are still limited by a narrow processing window and thermal degradation during melt processing. In this work, three novel additives based on ferulic acid esterified with butanediol, pentanediol, and glycerol (BDF, PDF, and GTF, respectively) were used as plasticizers and antioxidative additives to improve mechanical properties of PHB. Elongation at break up to 270% was obtained in presence of BDF and the processing window was improved nearly 10-fold. The Pawley method was used to identify the monoclinic space group P2 of the BDF. The estimated crystallite size (71 nm) agrees with a crystalline additive. With PHB70BDF30 blends, even higher elongations at break were obtained though dwindled with time. However, these properties could be recovered after thermal treatment. The high thermal stability of this additive leads to an increase in the fire retardancy property of the material, and the phenolic structure induced antioxidant properties to the samples as demonstrated by radical scavenging tests, further highlighting the possibilities of the PHB/additive blends for packaging applications.

4.
J Colloid Interface Sci ; 606(Pt 2): 1842-1851, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34507175

RESUMO

HYPOTHESIS: The crystallisation of biosourced ferulic acid derivatives - Bis-O-feruloyl-1,4-butanediol (BDF) - in a polylactic acid (PLA) matrix produces thermoplastic elastomeric blends that are transparent and biodegradable. Elastomeric and transparency are controlled by the domain size. PLA-BDF blends up to a threshold BDF concentration providing elastomeric properties show no evidence of BDF crystallisation. Heat treatment weakens the PLA-BDF interaction, give BDF molecules mobility to interact with nearby BDF molecules, leading to BDF nano-crystallisation. EXPERIMENTS: PLA-BDF blends were synthesised by hot-melt processing by mixing pure PLA with different concentrations of BDF (0-40 wt%) at 180 °C for 13 min. One set of blends was annealed at 50 °C for 24 h and compared with the unannealed set. The BDF crystallisation in the blends is studied by combining SAXS, SEM, XRD and Polarised Optical Microscopy. Monte-Carlo simulations were performed to validate SAXS data analysis. FINDINGS: Unannealed PLA-BDF blends of up to the threshold of 20 wt% BDF are dominated by the semicrystalline behaviour of PLA, without any trace of BDF crystallisation. Surprisingly, the PLA-BDF 40 wt% blend shows BDF crystallisation in the form of large and nanoscale structures bonded together by weak interparticle interaction. At concentrations up to 20 wt%, the BDF molecules are homogenously dispersed and bonded with PLA. Increasing BDF to 40 wt% brings the BDF molecules close enough to crystallise at room temperature, as the BDF molecules are still bonded with the PLA network. Annealing of PLA-BDF blends led to BDF nanocrystallisation and self-assembling in the PLA network. Both BDF nanoparticle size and interparticle distance decrease as the BDF concentration increases. However, the number density of BDF nanocrystals increases. The formed BDF nanocrystals have size ranging between 100 and 380 Å with interparticle distance of 120-180 Å. The structure factor and potential mean force confirm the strong interparticle interaction at the higher BDF concentration. Heat treatment weakens the PLA -BDF interaction, which provides mobility to the BDF molecules to change conformation and interact with the nearby BDF molecules, leading to BDF crystallisation. This novel BDF crystallisation and self-assembly mechanism can be used to develop biodegradable shape memory PLA blends for biomedical, shape memory, packaging and energy applications.


Assuntos
Poliésteres , Polímeros , Ácidos Cumáricos , Espalhamento a Baixo Ângulo , Difração de Raios X
5.
Macromol Rapid Commun ; 42(19): e2100284, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34347323

RESUMO

The homopolymerization in basic conditions of the recently reported bis(γ-lactone), 2H-HBO-HBO, is herein described for the first time. The solvent-free polymerization of this pentafunctional levoglucosenone (LGO) derivative affords fully renewable poly(vinyl-ether lactone) copolymers with a highly hyperbranched structure. This investigation stems from the polycondensation trials between 2H-HBO-HBO and di(methyl carbonate) isosorbide (DCI) that fails to give the anticipated polycarbonates. Such unexpected behavior is ascribed to the higher reactivity of the 2H-HBO-HBO hydroxy groups toward its α,ß-conjugated endocyclic C═C, rather than the DCI methylcarbonate moieties. The different mechanistic scenarios involved in 2H-HBO-HBO homopolymerization are addressed and a possible structure of poly(2H-HBO-HBO) is suggested. Furthermore, the readily accessible (S)-γ-hydroxymethyl-α,ß-butenolide (HBO) is also polymerized for the first time at a relatively large scale, without any prior modification, resulting in a new hyperbranched polymer with an environmental factor (E factor) ≈0. These new HBO-based polymers have a great potential for industrial-scale production due to their interesting properties and easy preparation via a low-cost, green, and efficient process.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Polímeros , Glucose/análogos & derivados , Substâncias Macromoleculares , Polimerização
6.
Biomacromolecules ; 22(4): 1568-1578, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33689317

RESUMO

Thanks to its remarkable properties such as sustainability, compostability, biocompatibility, and transparency, poly-l-lactic acid (PLA) would be a suitable replacement for oil-based polymers should it not suffer from low flexibility and poor toughness, restricting its use to rigid plastic by excluding elastomeric applications. Indeed, there are few fully biobased and biodegradable transparent elastomers-PLA-based or not-currently available. In the last decades, many strategies have been investigated to soften PLA and enhance its toughness and elongation at break by using plasticizers, oligomers, or polymers. This work shows how a ferulic acid-derived biobased additive (BDF) blends with a common rigid and brittle commercial grade of polylactic acid to provide a transparent non-covalently cross-linked elastomeric material with shape memory behavior exhibiting an elongation at break of 434% (vs 6% for pristine PLA). Through a structure-activity relationship analysis conducted with BDF analogues and a modeling study, we propose a mechanism based on π-π stacking to account for the elastomeric properties. Blending ferulic acid derivatives with polylactic acid generates a new family of fully sustainable transparent elastomeric materials with functional properties such as shape memory.


Assuntos
Poliésteres , Polímeros , Ácidos Cumáricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA