Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 290(1993): 20221897, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36809801

RESUMO

The recent collapse of predatory sunflower sea stars (Pycnopodia helianthoides) owing to sea star wasting disease (SSWD) is hypothesized to have contributed to proliferation of sea urchin barrens and losses of kelp forests on the North American west coast. We used experiments and a model to test whether restored Pycnopodia populations may help recover kelp forests through their consumption of nutritionally poor purple sea urchins (Strongylocentrotus purpuratus) typical of barrens. Pycnopodia consumed 0.68 S. purpuratus d-1, and our model and sensitivity analysis shows that the magnitude of recent Pycnopodia declines is consistent with urchin proliferation after modest sea urchin recruitment, and even small Pycnopodia recoveries could generally lead to lower densities of sea urchins that are consistent with kelp-urchin coexistence. Pycnopodia seem unable to chemically distinguish starved from fed urchins and indeed have higher predation rates on starved urchins owing to shorter handling times. These results highlight the importance of Pycnopodia in regulating purple sea urchin populations and maintaining healthy kelp forests through top-down control. The recovery of this important predator to densities commonly found prior to SSWD, whether through natural means or human-assisted reintroductions, may therefore be a key step in kelp forest restoration at ecologically significant scales.


Assuntos
Asteraceae , Helianthus , Kelp , Strongylocentrotus purpuratus , Animais , Humanos , Cadeia Alimentar , Estrelas-do-Mar , Comportamento Predatório , Florestas , Ouriços-do-Mar/fisiologia , Ecossistema
2.
Biol Bull ; 239(3): 183-188, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33347796

RESUMO

AbstractFor many historical and contemporary experimental studies in marine biology, seawater carbonate chemistry remains a ghost factor, an uncontrolled, unmeasured, and often dynamic variable affecting experimental organisms or the treatments to which investigators subject them. We highlight how environmental variability, such as seasonal upwelling and biological respiration, drive variation in seawater carbonate chemistry that can influence laboratory experiments in unintended ways and introduce a signal consistent with ocean acidification. As the impacts of carbonate chemistry on biochemical pathways that underlie growth, development, reproduction, and behavior become better understood, the hidden effects of this previously overlooked variable need to be acknowledged. Here we bring this emerging challenge to the attention of the wider community of experimental biologists who rely on access to organisms and water from marine and estuarine laboratories and who may benefit from explicit considerations of a growing literature on the pervasive effects of aquatic carbonate chemistry changes.


Assuntos
Laboratórios , Água do Mar , Dióxido de Carbono , Carbonatos/análise , Concentração de Íons de Hidrogênio , Oceanos e Mares
3.
Dis Aquat Organ ; 135(2): 89-95, 2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31342910

RESUMO

Negative consequences of parasites and disease on hosts are usually better understood than their multifaceted ecosystem effects. The pathogen Labyrinthula zosterae (Lz) causes eelgrass wasting disease but has relatives that produce large quantities of nutritionally valuable long-chain polyunsaturated fatty acids (LCPUFA) such as docosahexaenoic acid (DHA). Here we quantify the fatty acids (FA) of Lz cultured on artificial media, eelgrass-based media, and eelgrass segments to investigate whether Lz may similarly produce LCPUFA. We also assess whether field-collected lesions show similar FA patterns to laboratory-inoculated eelgrass. We find that Lz produces DHA as its dominant FA along with other essential FA on both artificial and eelgrass-based media. DHA content was greater in both laboratory-inoculated and field-collected diseased eelgrass relative to their respective controls. If Lz's production scales in situ, it may present an unrecognized source of LCPUFA in eelgrass ecosystems.


Assuntos
Estramenópilas , Animais , Ecossistema , Ácidos Graxos Essenciais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA