Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11797, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782951

RESUMO

Knee osteoarthritis (OA) diagnosis is based on symptoms, assessed through questionnaires such as the WOMAC. However, the inconsistency of pain recording and the discrepancy between joint phenotype and symptoms highlight the need for objective biomarkers in knee OA diagnosis. To this end, we study relationships among clinical and molecular data in a cohort of women (n = 51) with Kellgren-Lawrence grade 2-3 knee OA through a Support Vector Machine (SVM) and a regulation network model. Clinical descriptors (i.e., pain catastrophism, depression, functionality, joint pain, rigidity, sensitization and synovitis) are used to classify patients. A Youden's test is performed for each classifier to determine optimal binarization thresholds for the descriptors. Thresholds are tested against patient stratification according to baseline WOMAC data from the Osteoarthritis Initiative, and the mean accuracy is 0.97. For our cohort, the data used as SVM inputs are knee OA descriptors, synovial fluid proteomic measurements (n = 25), and transcription factor activation obtained from regulatory network model stimulated with the synovial fluid measurements. The relative weights after classification reflect input importance. The performance of each classifier is evaluated through ROC-AUC analysis. The best classifier with clinical data is pain catastrophism (AUC = 0.9), highly influenced by funcionality and pain sensetization, suggesting that kinesophobia is involved in pain perception. With synovial fluid proteins used as input, leptin strongly influences every classifier, suggesting the importance of low-grade inflammation. When transcription factors are used, the mean AUC is limited to 0.608, which can be related to the pleomorphic behaviour of osteoarthritic chondrocytes. Nevertheless, funcionality has an AUC of 0.7 with a decisive importance of FOXO downregulation. Though larger and longitudinal cohorts are needed, this unique combination of SVM and regulatory network model shall help to stratify knee OA patients more objectively.


Assuntos
Osteoartrite do Joelho , Máquina de Vetores de Suporte , Humanos , Feminino , Osteoartrite do Joelho/diagnóstico , Osteoartrite do Joelho/metabolismo , Pessoa de Meia-Idade , Idoso , Redes Reguladoras de Genes , Biomarcadores , Líquido Sinovial/metabolismo , Proteômica/métodos
2.
Antioxidants (Basel) ; 13(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38247491

RESUMO

In this study, we examined the metabolic and gut microbiome responses to paraquat (PQ) in male Wistar rats, focusing on oxidative stress effects. Rats received a single intraperitoneal injection of PQ at 15 and 30 mg/kg, and various oxidative stress parameters (i.e., MDA, SOD, ROS, 8-isoprostanes) were assessed after three days. To explore the omic profile, GC-qTOF and UHPLC-qTOF were performed to assess the plasma metabolome; 1H-NMR was used to assess the urine metabolome; and shotgun metagenomics sequencing was performed to study the gut microbiome. Our results revealed reductions in body weight and tissue changes, particularly in the liver, were observed, suggesting a systemic effect of PQ. Elevated lipid peroxidation and reactive oxygen species levels in the liver and plasma indicated the induction of oxidative stress. Metabolic profiling revealed changes in the tricarboxylic acid cycle, accumulation of ketone body, and altered levels of key metabolites, such as 3-hydroxybutyric acid and serine, suggesting intricate links between energy metabolism and redox reactions. Plasma metabolomic analysis revealed alterations in mitochondrial metabolism, nicotinamide metabolism, and tryptophan degradation. The gut microbiome showed shifts, with higher PQ doses influencing microbial populations (e.g., Escherichia coli and Akkermansia muciniphila) and metagenomic functions (pyruvate metabolism, fermentation, nucleotide and amino acid biosynthesis). Overall, this study provides comprehensive insights into the complex interplay between PQ exposure, metabolic responses, and gut microbiome dynamics. These findings enhance our understanding of the mechanisms behind oxidative stress-induced metabolic alterations and underscore the connections between xenobiotic exposure, gut microbiota, and host metabolism.

3.
Crit Rev Food Sci Nutr ; : 1-29, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37077157

RESUMO

Personalized nutrition (PN) has gained much attention as a tool for empowerment of consumers to promote changes in dietary behavior, optimizing health status and preventing diet related diseases. Generalized implementation of PN faces different obstacles, one of the most relevant being metabolic characterization of the individual. Although omics technologies allow for assessment the dynamics of metabolism with unprecedented detail, its translatability as affordable and simple PN protocols is still difficult due to the complexity of metabolic regulation and to different technical and economical constrains. In this work, we propose a conceptual framework that considers the dysregulation of a few overarching processes, namely Carbohydrate metabolism, lipid metabolism, inflammation, oxidative stress and microbiota-derived metabolites, as the basis of the onset of several non-communicable diseases. These processes can be assessed and characterized by specific sets of proteomic, metabolomic and genetic markers that minimize operational constrains and maximize the information obtained at the individual level. Current machine learning and data analysis methodologies allow the development of algorithms to integrate omics and genetic markers. Reduction of dimensionality of variables facilitates the implementation of omics and genetic information in digital tools. This framework is exemplified by presenting the EU-Funded project PREVENTOMICS as a use case.

4.
Clin Nutr ; 41(8): 1834-1844, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35839545

RESUMO

BACKGROUND & AIMS: Growing evidence suggests that biomarker-guided dietary interventions can optimize response to treatment. In this study, we evaluated the efficacy of the PREVENTOMCIS platform-which uses metabolomic and genetic information to classify individuals into different 'metabolic clusters' and create personalized dietary plans-for improving health outcomes in subjects with overweight or obesity. METHODS: A 10-week parallel, double-blinded, randomized intervention was conducted in 100 adults (82 completers) aged 18-65 years, with body mass index ≥27 but <40 kg/m2, who were allocated into either a personalized diet group (n = 49) or a control diet group (n = 51). About 60% of all food was provided free-of-charge. No specific instruction to restrict energy intake was given. The primary outcome was change in fat mass from baseline, evaluated by dual energy X-ray absorptiometry. Other endpoints included body weight, waist circumference, lipid profile, glucose homeostasis markers, inflammatory markers, blood pressure, physical activity, stress and eating behavior. RESULTS: There were significant main effects of time (P < 0.01), but no group main effects, or time-by-group interactions, for the change in fat mass (personalized: -2.1 [95% CI -2.9, -1.4] kg; control: -2.0 [95% CI -2.7, -1.3] kg) and body weight (personalized: -3.1 [95% CI -4.1, -2.1] kg; control: -3.3 [95% CI -4.2, -2.4] kg). The difference between groups in fat mass change was -0.1 kg (95% CI -1.2, 0.9 kg, P = 0.77). Both diets resulted in significant improvements in insulin resistance and lipid profile, but there were no significant differences between groups. CONCLUSION: Personalized dietary plans did not result in greater benefits over a generic, but generally healthy diet, in this 10-week clinical trial. Further studies are required to establish the soundness of different precision nutrition approaches, and translate this science into clinically relevant dietary advice to reduce the burden of obesity and its comorbidities. CLINICAL TRIAL REGISTRY: ClinicalTrials.gov registry (NCT04590989).


Assuntos
Obesidade , Redução de Peso , Adulto , Biomarcadores , Índice de Massa Corporal , Peso Corporal , Humanos , Lipídeos , Obesidade/terapia , Sobrepeso/terapia
5.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269702

RESUMO

Chronic inflammation is an important risk factor in a broad variety of physical and mental disorders leading to highly prevalent non-communicable diseases (NCDs). However, there is a need for a deeper understanding of this condition and its progression to the disease state. For this reason, it is important to define metabolic pathways and complementary biomarkers associated with homeostatic disruption in chronic inflammation. To achieve that, male Wistar rats were subjected to intraperitoneal and intermittent injections with saline solution or increasing lipopolysaccharide (LPS) concentrations (0.5, 5 and 7.5 mg/kg) thrice a week for 31 days. Biochemical and inflammatory parameters were measured at the end of the study. To assess the omics profile, GC-qTOF and UHPLC-qTOF were performed to evaluate plasma metabolome; 1H-NMR was used to evaluate urine metabolome; additionally, shotgun metagenomics sequencing was carried out to characterize the cecum microbiome. The chronicity of inflammation in the study was evaluated by the monitoring of monocyte chemoattractant protein-1 (MCP-1) during the different weeks of the experimental process. At the end of the study, together with the increased levels of MCP-1, levels of interleukin-6 (IL-6), tumour necrosis factor alpha (TNF-α) and prostaglandin E2 (PGE2) along with 8-isoprostanes (an indicative of oxidative stress) were significantly increased (p-value < 0.05). The leading features implicated in the current model were tricarboxylic acid (TCA) cycle intermediates (i.e., alpha-ketoglutarate, aconitic acid, malic acid, fumaric acid and succinic acid); lipids such as specific cholesterol esters (ChoEs), lysophospholipids (LPCs) and phosphatidylcholines (PCs); and glycine, as well as N, N-dimethylglycine, which are related to one-carbon (1C) metabolism. These metabolites point towards mitochondrial metabolism through TCA cycle, ß-oxidation of fatty acids and 1C metabolism as interconnected pathways that could reveal the metabolic effects of chronic inflammation induced by LPS administration. These results provide deeper knowledge concerning the impact of chronic inflammation on the disruption of metabolic homeostasis.


Assuntos
Ácidos Graxos , Lipopolissacarídeos , Animais , Carbono , Homeostase , Humanos , Inflamação , Lipopolissacarídeos/toxicidade , Masculino , Metaboloma , Ratos , Ratos Wistar
6.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34884735

RESUMO

Stress disorders have dramatically increased in recent decades becoming the most prevalent psychiatric disorder in the United States and Europe. However, the diagnosis of stress disorders is currently based on symptom checklist and psychological questionnaires, thus making the identification of candidate biomarkers necessary to gain better insights into this pathology and its related metabolic alterations. Regarding the identification of potential biomarkers, omic profiling and metabolic footprint arise as promising approaches to recognize early biochemical changes in such disease and provide opportunities for the development of integrative candidate biomarkers. Here, we studied plasma and urine metabolites together with metagenomics in a 3 days Chronic Unpredictable Mild Stress (3d CUMS) animal approach that aims to focus on the early stress period of a well-established depression model. The multi-omics integration showed a profile composed by a signature of eight plasma metabolites, six urine metabolites and five microbes. Specifically, threonic acid, malic acid, alpha-ketoglutarate, succinic acid and cholesterol were proposed as key metabolites that could serve as key potential biomarkers in plasma metabolome of early stages of stress. Such findings targeted the threonic acid metabolism and the tricarboxylic acid (TCA) cycle as important pathways in early stress. Additionally, an increase in opportunistic microbes as virus of the Herpesvirales was observed in the microbiota as an effect of the primary stress stages. Our results provide an experimental biochemical characterization of the early stage of CUMS accompanied by a subsequent omic profiling and a metabolic footprinting that provide potential candidate biomarkers.


Assuntos
Metaboloma , Microbiota , Estresse Psicológico/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/urina , Masculino , Ratos Wistar , Estresse Psicológico/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA