Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Genome Biol Evol ; 16(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38311843

RESUMO

The neutral and nearly neutral theories, introduced more than 50 yr ago, have raised and still raise passionate discussion regarding the forces governing molecular evolution and their relative importance. The debate, initially focused on the amount of within-species polymorphism and constancy of the substitution rate, has spread, matured, and now underlies a wide range of topics and questions. The neutralist/selectionist controversy has structured the field and influences the way molecular evolutionary scientists conceive their research.


Assuntos
Evolução Biológica , Evolução Molecular , Polimorfismo Genético
2.
Syst Biol ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38330161

RESUMO

The evolution of gene families is complex, involving gene-level evolutionary events such as gene duplication, horizontal gene transfer, and gene loss (DTL), and other processes such as incomplete lineage sorting (ILS). Because of this, topological differences often exist between gene trees and species trees. A number of models have been recently developed to explain these discrepancies, the most realistic of which attempt to consider both gene-level events and ILS. When unified in a single model, the interaction between ILS and gene-level events can cause polymorphism in gene copy number, which we refer to as copy number hemiplasy (CNH). In this paper we extend the Wright-Fisher process to include duplications and losses over several species, and show that the probability of CNH for this process can be significant. We study how well two unified models - MLMSC (MultiLocus MultiSpecies Coalescent), which models CNH, and DLCoal (Duplication, Loss, and Coalescence), which does not - approximate the Wright-Fisher process with duplication and loss. We then study the effect of CNH on gene family evolution by comparing MLMSC and DLCoal. We generate comparable gene trees under both models, showing significant differences in various summary statistics; most importantly, CNH reduces the number of gene copies greatly. If this is not taken into account, the traditional method of estimating duplication rates (by counting the number of gene copies) becomes inaccurate. The simulated gene trees are also used for species tree inference with the summary methods ASTRAL and ASTRAL-Pro, demonstrating that their accuracy, based on CNH-unaware simulations calibrated on real data, may have been overestimated.

3.
Sci Adv ; 9(34): eadi2804, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37624896

RESUMO

In asexual animals, female meiosis is modified to produce diploid oocytes. If meiosis still involves recombination, this is expected to lead to a rapid loss of heterozygosity, with adverse effects on fitness. Many asexuals, however, have a heterozygous genome, the underlying mechanisms being most often unknown. Cytological and population genomic analyses in the nematode Mesorhabditis belari revealed another case of recombining asexual being highly heterozygous genome-wide. We demonstrated that heterozygosity is maintained despite recombination because the recombinant chromatids of each chromosome pair cosegregate during the unique meiotic division. A theoretical model confirmed that this segregation bias is necessary to account for the observed pattern and likely to evolve under a wide range of conditions. Our study uncovers an unexpected type of non-Mendelian genetic inheritance involving cosegregation of recombinant chromatids.


Assuntos
Cromátides , Nematoides , Feminino , Animais , Cromátides/genética , Genômica , Diploide , Meiose/genética
4.
Neuroinformatics ; 21(1): 207-220, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36348198

RESUMO

Recent technological advances have enabled the recording of neurons in intact circuits with a high spatial and temporal resolution, creating the need for modeling with the same precision. In particular, the development of ultra-fast two-photon microscopy combined with fluorescence-based genetically-encoded Ca2+-indicators allows capture of full-dendritic arbor and somatic responses associated with synaptic input and action potential output. The complexity of dendritic arbor structures and distributed patterns of activity over time results in the generation of incredibly rich 4D datasets that are challenging to analyze (Sakaki et al. in Frontiers in Neural Circuits 14:33, 2020). Interpreting neural activity from fluorescence-based Ca2+ biosensors is challenging due to non-linear interactions between several factors influencing intracellular calcium ion concentration and its binding to sensors, including the ionic dynamics driven by diffusion, electrical gradients and voltage-gated conductances. To investigate those dynamics, we designed a model based on a Cable-like equation coupled to the Nernst-Planck equations for ionic fluxes in electrolytes. We employ this model to simulate signal propagation and ionic electrodiffusion across a dendritic arbor. Using these simulation results, we then designed an algorithm to detect synapses from Ca2+ imaging datasets. We finally apply this algorithm to experimental Ca2+-indicator datasets from neurons expressing jGCaMP7s (Dana et al. in Nature Methods 16:649-657, 2019), using full-dendritic arbor sampling in vivo in the Xenopus laevis optic tectum using fast random-access two-photon microscopy. Our model reproduces the dynamics of visual stimulus-evoked jGCaMP7s-mediated calcium signals observed experimentally, and the resulting algorithm allows prediction of the location of synapses across the dendritic arbor. Our study provides a way to predict synaptic activity and location on dendritic arbors, from fluorescence data in the full dendritic arbor of a neuron recorded in the intact and awake developing vertebrate brain.


Assuntos
Cálcio , Dendritos , Dendritos/fisiologia , Cálcio/metabolismo , Neurônios/fisiologia , Sinapses/fisiologia , Algoritmos
5.
Mol Biol Evol ; 39(4)2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35363317

RESUMO

Hybridization occupies a central role in many fundamental evolutionary processes, such as speciation or adaptation. Yet, despite its pivotal importance in evolution, little is known about the actual prevalence and distribution of current hybridization across the tree of life. Here we develop and implement a new statistical method enabling the detection of F1 hybrids from single-individual genome sequencing data. Using simulations and sequencing data from known hybrid systems, we first demonstrate the specificity of the method, and identify its statistical limits. Next, we showcase the method by applying it to available sequencing data from more than 1,500 species of Arthropods, including Hymenoptera, Hemiptera, Coleoptera, Diptera, and Archnida. Among these taxa, we find Hymenoptera, and especially ants, to display the highest number of candidate F1 hybrids, suggesting higher rates of recent hybridization between previously isolated gene pools in these groups. The prevalence of F1 hybrids was heterogeneously distributed across ants, with taxa including many candidates tending to harbor specific ecological and life-history traits. This work shows how large-scale genomic comparative studies of recent hybridization can be implemented, uncovering the determinants of first-generation hybridization across whole taxa.


Assuntos
Formigas , Animais , Formigas/genética , Pool Gênico , Genoma , Genômica , Hibridização Genética
6.
Proc Natl Acad Sci U S A ; 119(11): e2110614119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35238662

RESUMO

SignificanceThe dynamics of deleterious variation under contrasting demographic scenarios remain poorly understood in spite of their relevance in evolutionary and conservation terms. Here we apply a genomic approach to study differences in the burden of deleterious alleles between the endangered Iberian lynx (Lynx pardinus) and the widespread Eurasian lynx (Lynx lynx). Our analysis unveils a significantly lower deleterious burden in the former species that should be ascribed to genetic purging, that is, to the increased opportunities of selection against recessive homozygotes due to the inbreeding caused by its smaller population size, as illustrated by our analytical predictions. This research provides theoretical and empirical evidence on the evolutionary relevance of genetic purging under certain demographic conditions.


Assuntos
Espécies em Perigo de Extinção , Lynx/genética , Animais , Evolução Biológica , Variação Genética , Genética Populacional , Endogamia , Mutação , Polimorfismo de Nucleotídeo Único
7.
Sci Adv ; 8(8): eabg3842, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35196080

RESUMO

The shift from sexual reproduction to parthenogenesis has occurred repeatedly in animals, but how the loss of sex affects genome evolution remains poorly understood. We generated reference genomes for five independently evolved parthenogenetic species in the stick insect genus Timema and their closest sexual relatives. Using these references and population genomic data, we show that parthenogenesis results in an extreme reduction of heterozygosity and often leads to genetically uniform populations. We also find evidence for less effective positive selection in parthenogenetic species, suggesting that sex is ubiquitous in natural populations because it facilitates fast rates of adaptation. Parthenogenetic species did not show increased transposable element (TE) accumulation, likely because there is little TE activity in the genus. By using replicated sexual-parthenogenetic comparisons, our study reveals how the absence of sex affects genome evolution in natural populations, providing empirical support for the negative consequences of parthenogenesis as predicted by theory.


Assuntos
Genoma de Inseto , Partenogênese , Animais , Elementos de DNA Transponíveis/genética , Insetos/genética , Neópteros/genética , Partenogênese/genética , Reprodução/genética
8.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34535550

RESUMO

Sex strongly impacts genome evolution via recombination and segregation. In the absence of these processes, haplotypes within lineages of diploid organisms are predicted to accumulate mutations independently of each other and diverge over time. This so-called "Meselson effect" is regarded as a strong indicator of the long-term evolution under obligate asexuality. Here, we present genomic and transcriptomic data of three populations of the asexual oribatid mite species Oppiella nova and its sexual relative Oppiella subpectinata We document strikingly different patterns of haplotype divergence between the two species, strongly supporting Meselson effect-like evolution and long-term asexuality in O. nova: I) variation within individuals exceeds variation between populations in O. nova but vice versa in O. subpectinata; II) two O. nova sublineages feature a high proportion of lineage-specific heterozygous single-nucleotide polymorphisms (SNPs), indicating that haplotypes continued to diverge after lineage separation; III) the deepest split in gene trees generally separates the two haplotypes in O. nova, but populations in O. subpectinata; and IV) the topologies of the two haplotype trees match each other. Our findings provide positive evidence for the absence of canonical sex over evolutionary time in O. nova and suggest that asexual oribatid mites can escape the dead-end fate usually associated with asexual lineages.


Assuntos
Ácaros/genética , Reprodução Assexuada/genética , Ácaros e Carrapatos/genética , Animais , Evolução Molecular , Variação Genética/genética , Haplótipos/genética , Filogenia
9.
G3 (Bethesda) ; 11(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33591306

RESUMO

Ostracods are one of the oldest crustacean groups with an excellent fossil record and high importance for phylogenetic analyses but genome resources for this class are still lacking. We have successfully assembled and annotated the first reference genomes for three species of nonmarine ostracods; two with obligate sexual reproduction (Cyprideis torosa and Notodromas monacha) and the putative ancient asexual Darwinula stevensoni. This kind of genomic research has so far been impeded by the small size of most ostracods and the absence of genetic resources such as linkage maps or BAC libraries that were available for other crustaceans. For genome assembly, we used an Illumina-based sequencing technology, resulting in assemblies of similar sizes for the three species (335-382 Mb) and with scaffold numbers and their N50 (19-56 kb) in the same orders of magnitude. Gene annotations were guided by transcriptome data from each species. The three assemblies are relatively complete with BUSCO scores of 92-96. The number of predicted genes (13,771-17,776) is in the same range as Branchiopoda genomes but lower than in most malacostracan genomes. These three reference genomes from nonmarine ostracods provide the urgently needed basis to further develop ostracods as models for evolutionary and ecological research.


Assuntos
Crustáceos , Genoma , Animais , Evolução Biológica , Crustáceos/genética , Filogenia , Reprodução
10.
Mol Ecol Resour ; 21(8): 2629-2644, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33448666

RESUMO

We present DILS, a deployable statistical analysis platform for conducting demographic inferences with linked selection from population genomic data using an Approximate Bayesian Computation framework. DILS takes as input single-population or two-population data sets (multilocus fasta sequences) and performs three types of analyses in a hierarchical manner, identifying: (a) the best demographic model to study the importance of gene flow and population size change on the genetic patterns of polymorphism and divergence, (b) the best genomic model to determine whether the effective size Ne and migration rate N, m are heterogeneously distributed along the genome (implying linked selection) and (c) loci in genomic regions most associated with barriers to gene flow. Also available via a Web interface, an objective of DILS is to facilitate collaborative research in speciation genomics. Here, we show the performance and limitations of DILS by using simulations and finally apply the method to published data on a divergence continuum composed by 28 pairs of Mytilus mussel populations/species.


Assuntos
Fluxo Gênico , Genoma , Teorema de Bayes , Especiação Genética , Genética Populacional , Genômica , Modelos Genéticos , Densidade Demográfica , Seleção Genética
11.
Syst Biol ; 70(4): 822-837, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33169795

RESUMO

Incomplete lineage sorting (ILS), the interaction between coalescence and speciation, can generate incongruence between gene trees and species trees, as can gene duplication (D), transfer (T), and loss (L). These processes are usually modeled independently, but in reality, ILS can affect gene copy number polymorphism, that is, interfere with DTL. This has been previously recognized, but not treated in a satisfactory way, mainly because DTL events are naturally modeled forward-in-time, while ILS is naturally modeled backward-in-time with the coalescent. Here, we consider the joint action of ILS and DTL on the gene tree/species tree problem in all its complexity. In particular, we show that the interaction between ILS and duplications/transfers (without losses) can result in patterns usually interpreted as resulting from gene loss, and that the realized rate of D, T, and L becomes nonhomogeneous in time when ILS is taken into account. We introduce algorithmic solutions to these problems. Our new model, the multilocus multispecies coalescent, which also accounts for any level of linkage between loci, generalizes the multispecies coalescent (MSC) model and offers a versatile, powerful framework for proper simulation, and inference of gene family evolution. [Gene duplication; gene loss; horizontal gene transfer; incomplete lineage sorting; multispecies coalescent; hemiplasy; recombination.].


Assuntos
Evolução Molecular , Duplicação Gênica , Modelos Genéticos , Família Multigênica , Simulação por Computador , Transferência Genética Horizontal , Especiação Genética , Filogenia
12.
Genetics ; 216(2): 559-572, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32839240

RESUMO

Genetic drift is an important evolutionary force of strength inversely proportional to Ne , the effective population size. The impact of drift on genome diversity and evolution is known to vary among species, but quantifying this effect is a difficult task. Here we assess the magnitude of variation in drift power among species of animals via its effect on the mutation load - which implies also inferring the distribution of fitness effects of deleterious mutations. To this aim, we analyze the nonsynonymous (amino-acid changing) and synonymous (amino-acid conservative) allele frequency spectra in a large sample of metazoan species, with a focus on the primates vs. fruit flies contrast. We show that a Gamma model of the distribution of fitness effects is not suitable due to strong differences in estimated shape parameters among taxa, while adding a class of lethal mutations essentially solves the problem. Using the Gamma + lethal model and assuming that the mean deleterious effects of nonsynonymous mutations is shared among species, we estimate that the power of drift varies by a factor of at least 500 between large-Ne and small-Ne species of animals, i.e., an order of magnitude more than the among-species variation in genetic diversity. Our results are relevant to Lewontin's paradox while further questioning the meaning of the Ne parameter in population genomics.


Assuntos
Deriva Genética , Modelos Genéticos , Taxa de Mutação , Animais , Aptidão Genética , Humanos , Mutação de Sentido Incorreto
13.
PLoS Genet ; 16(4): e1008668, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32251427

RESUMO

Whether adaptation is limited by the beneficial mutation supply is a long-standing question of evolutionary genetics, which is more generally related to the determination of the adaptive substitution rate and its relationship with species effective population size (Ne) and genetic diversity. Empirical evidence reported so far is equivocal, with some but not all studies supporting a higher adaptive substitution rate in large-Ne than in small-Ne species. We gathered coding sequence polymorphism data and estimated the adaptive amino-acid substitution rate ωa, in 50 species from ten distant groups of animals with markedly different population mutation rate θ. We reveal the existence of a complex, timescale dependent relationship between species adaptive substitution rate and genetic diversity. We find a positive relationship between ωa and θ among closely related species, indicating that adaptation is indeed limited by the mutation supply, but this was only true in relatively low-θ taxa. In contrast, we uncover no significant correlation between ωa and θ at a larger taxonomic scale, suggesting that the proportion of beneficial mutations scales negatively with species' long-term Ne.


Assuntos
Adaptação Fisiológica , Taxa de Mutação , Polimorfismo Genético , Animais , Aves/genética , Insetos/genética , Mamíferos/genética , Modelos Genéticos , Moluscos/genética , Fases de Leitura Aberta , Tempo
14.
G3 (Bethesda) ; 10(2): 721-730, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31862787

RESUMO

Thanks to huge advances in sequencing technologies, genomic resources are increasingly being generated and shared by the scientific community. The quality of such public resources are therefore of critical importance. Errors due to contamination are particularly worrying; they are widespread, propagate across databases, and can compromise downstream analyses, especially the detection of horizontally-transferred sequences. However we still lack consistent and comprehensive assessments of contamination prevalence in public genomic data. Here we applied a standardized procedure for foreign sequence annotation to 43 published arthropod genomes from the widely used Ensembl Metazoa database. This method combines information on sequence similarity and synteny to identify contaminant and putative horizontally-transferred sequences in any genome assembly, provided that an adequate reference database is available. We uncovered considerable heterogeneity in quality among arthropod assemblies, some being devoid of contaminant sequences, whereas others included hundreds of contaminant genes. Contaminants far outnumbered horizontally-transferred genes and were a major confounder of their detection, quantification and analysis. We strongly recommend that automated standardized decontamination procedures be systematically embedded into the submission process to genomic databases.


Assuntos
Artrópodes/genética , Contaminação por DNA , Genoma , Genômica , Animais , Biologia Computacional/métodos , Bases de Dados Genéticas , Genoma de Inseto , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Anotação de Sequência Molecular , Filogenia , Reprodutibilidade dos Testes , Análise de Sequência de DNA
15.
Methods Mol Biol ; 1910: 331-369, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31278670

RESUMO

A major current molecular evolution challenge is to link comparative genomic patterns to species' biology and ecology. Breeding systems are pivotal because they affect many population genetic processes and thus genome evolution. We review theoretical predictions and empirical evidence about molecular evolutionary processes under three distinct breeding systems-outcrossing, selfing, and asexuality. Breeding systems may have a profound impact on genome evolution, including molecular evolutionary rates, base composition, genomic conflict, and possibly genome size. We present and discuss the similarities and differences between the effects of selfing and clonality. In reverse, comparative and population genomic data and approaches help revisiting old questions on the long-term evolution of breeding systems.


Assuntos
Cruzamentos Genéticos , Evolução Molecular , Genoma , Genômica , Reprodução Assexuada/genética , Composição de Bases , Cruzamento , Elementos de DNA Transponíveis , Genética Populacional , Tamanho do Genoma , Genômica/métodos , Genótipo , Hibridização Genética , Meiose/genética , Ploidias , Recombinação Genética , Seleção Genética , Segregação Social
16.
Evol Appl ; 12(4): 657-663, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30976300

RESUMO

Delineating species is a difficult and seemingly uninteresting issue that is still essential to address. Taxonomic methodology is heterogeneous according to the taxa and scientists involved due to the disparate data quality and quantity and disagreements over the species concept. This has negative impacts on basic and applied research. Genomic data substantially enhance our understanding of the speciation process but do not provide a ubiquitous solution to the species problem. The relevance of comparative approaches in speciation research has nevertheless recently been demonstrated. I suggest moving towards a more unified taxonomic classification through a reference-based decision procedure.

17.
J Evol Biol ; 32(3): 194-204, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30523653

RESUMO

Sex chromosomes have different evolutionary properties compared to autosomes due to their hemizygous nature. In particular, recessive mutations are more readily exposed to selection, which can lead to faster rates of molecular evolution. Here, we report patterns of gene expression and molecular evolution for a group of butterflies. First, we improve the completeness of the Heliconius melpomene reference annotation, a neotropical butterfly with a ZW sex determination system. Then, we analyse RNA from male and female whole abdomens and sequence female ovary and gut tissue to identify sex- and tissue-specific gene expression profiles in H. melpomene. Using these expression profiles, we compare (a) sequence divergence and polymorphism; (b) the strength of positive and negative selection; and (c) rates of adaptive evolution, for Z and autosomal genes between two species of Heliconius butterflies, H. melpomene and H. erato. We show that the rate of adaptive substitutions is higher for Z than autosomal genes, but contrary to expectation, it is also higher for male-biased than female-biased genes. Additionally, we find no significant increase in the rate of adaptive evolution or purifying selection on genes expressed in ovary tissue, a heterogametic-specific tissue. Our results contribute to a growing body of literature from other ZW systems that also provide mixed evidence for a fast-Z effect where hemizygosity influences the rate of adaptive substitutions.


Assuntos
Adaptação Biológica , Borboletas/genética , Evolução Molecular , Seleção Genética , Cromossomos Sexuais , Animais , Feminino , Trato Gastrointestinal/metabolismo , Expressão Gênica , Masculino , Ovário/metabolismo , Caracteres Sexuais , Transcriptoma
18.
Mol Biol Evol ; 36(3): 458-471, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30590692

RESUMO

Recombination is expected to affect functional sequence evolution in several ways. On the one hand, recombination is thought to improve the efficiency of multilocus selection by dissipating linkage disequilibrium. On the other hand, natural selection can be counteracted by recombination-associated transmission distorters such as GC-biased gene conversion (gBGC), which tends to promote G and C alleles irrespective of their fitness effect in high-recombining regions. It has been suggested that gBGC might impact coding sequence evolution in vertebrates, and particularly the ratio of nonsynonymous to synonymous substitution rates (dN/dS). However, distinctive gBGC patterns have been reported in mammals and birds, maybe reflecting the documented contrasts in evolutionary dynamics of recombination rate between these two taxa. Here, we explore how recombination and gBGC affect coding sequence evolution in mammals and birds by analyzing proteome-wide data in six species of Galloanserae (fowls) and six species of catarrhine primates. We estimated the dN/dS ratio and rates of adaptive and nonadaptive evolution in bins of genes of increasing recombination rate, separately analyzing AT → GC, GC → AT, and G ↔ C/A ↔ T mutations. We show that in both taxa, recombination and gBGC entail a decrease in dN/dS. Our analysis indicates that recombination enhances the efficiency of purifying selection by lowering Hill-Robertson effects, whereas gBGC leads to an overestimation of the adaptive rate of AT → GC mutations. Finally, we report a mutagenic effect of recombination, which is independent of gBGC.


Assuntos
Evolução Molecular , Conversão Gênica , Aves Domésticas/genética , Primatas/genética , Animais
19.
Biol Lett ; 14(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29743267

RESUMO

Estimating the proportion of adaptive substitutions (α) is of primary importance to uncover the determinants of adaptation in comparative genomic studies. Several methods have been proposed to estimate α from patterns polymorphism and divergence in coding sequences. However, estimators of α can be biased when the underlying assumptions are not met. Here we focus on a potential source of bias, i.e. variation through time in the long-term population size (N) of the considered species. We show via simulations that ancient demographic fluctuations can generate severe overestimations of α, and this is irrespective of the recent population history.


Assuntos
Adaptação Fisiológica/genética , Evolução Molecular , Densidade Demográfica , Clima , Simulação por Computador , Genoma , Modelos Genéticos , Taxa de Mutação , Polimorfismo Genético
20.
Mol Biol Evol ; 35(7): 1668-1677, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29659991

RESUMO

Recombination is a fundamental process with significant impacts on genome evolution. Predicted consequences of the loss of recombination include a reduced effectiveness of selection, changes in the amount of neutral polymorphisms segregating in populations, and an arrest of GC-biased gene conversion. Although these consequences are empirically well documented for nonrecombining genome portions, it remains largely unknown if they extend to the whole genome scale in asexual organisms. We identify the consequences of asexuality using de novo transcriptomes of five independently derived, obligately asexual lineages of stick insects, and their sexual sister-species. We find strong evidence for higher rates of deleterious mutation accumulation, lower levels of segregating polymorphisms and arrested GC-biased gene conversion in asexuals as compared with sexuals. Taken together, our study conclusively shows that predicted consequences of genome evolution under asexuality can indeed be found in natural populations.


Assuntos
Conversão Gênica , Variação Genética , Insetos/genética , Acúmulo de Mutações , Reprodução Assexuada , Animais , Seleção Genética , Mutação Silenciosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA