Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1196829, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465665

RESUMO

Introduction: Prostate cancer is one of the most commonly diagnosed malignancies in men with high mortality rates. Despite the recent therapeutic advances, such as immunotherapies, survival of patients with advance disease remains significantly low. Blockade of immune checkpoints has led to low response rates in these patients probably due to the immunosuppressive microenvironment and low mutation burden of prostate tumors. Combination of multiple immunotherapeutic regimes has also been unsatisfactory due to augmented adverse effects. To activate multiple immune-stimulatory pathways in the hostile prostate cancer microenvironment, we used a combination of cytotopically modified interleukin-15 (cyto-IL-15) with the stimulator of interferon genes (STING) agonist, ADU-S100. Methods: To determine whether this combination regime could lead to both local and systemic anti-tumor effects, intratumoral administration of these agents was used in murine models of prostate cancer. Tumor growth and mouse survival were monitored, and ex vivo analyses, and RNA sequencing were performed on the tumors. Results: Intratumorally injected ADU-S100 and cyto-IL-15 synergized to eliminate tumors in 58-67% of mice with unilateral tumors and promoted abscopal immunity in 50% of mice with bilateral tumors treated only at one side. Moreover, this combination regime offered immunoprotection against tumor rechallenge in 83% of cured mice. The efficacy of the combination treatment was associated with a strong innate and adaptive immune activation and induction of apoptotic and necrotic cell death. Cytokines, including type I and II interferons, and cytokine signalling pathways were activated, NK and T cell mediated cytotoxicity was increased, and B cells were activated both locally and systemically. While ADU-S100 led to an ulcerative pathology at the injection site, no other adverse effects were observed. Discussion: Localised administration of a STING agonist together with cyto-IL-15 can confer significant systemic benefits and long-lasting immunity against prostate tumors while reducing immune related toxicities.


Assuntos
Interleucina-15 , Neoplasias da Próstata , Humanos , Masculino , Camundongos , Animais , Citocinas , Neoplasias da Próstata/tratamento farmacológico , Linfócitos T , Modelos Animais de Doenças , Microambiente Tumoral
3.
Front Mol Biosci ; 8: 755764, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778376

RESUMO

Interleukin-15 (IL-15) is a cytokine previously suggested as a potential immunotherapy for cancer treatment. IL-15 can effectively reduce tumor growth in many preclinical tumor models including prostate cancer. This is due to its ability to expand and activate immune cells, such as CD8+ T cells and natural killer cells. To increase the potency of IL-15, we have engineered a protein variant that can be modified to localize and be retained in tissues where it is administered. However, the production of recombinant IL-15, the purity, and correct refolding of the final protein is not always ideal. In the current study, we aimed to optimize the methodology for production and purification of a modified recombinant human IL-15 and investigate the efficacy of the produced protein in the treatment of prostate tumors. Human IL-15 with its polypeptide sequence modified at the C-terminus to enable thiol conjugation with membrane localizing peptides, was produced in E. coli and purified using mild denaturing conditions (2M urea) from a washing step or from solubilization of inclusion bodies. The purified protein from the wash fraction was conjugated to a myristoylated peptide to form a membrane-localizing IL-15 (cyto-IL-15). The efficacy of cyto-IL-15 was investigated in subcutaneous TRAMP-C2 prostate tumors in mice and compared with cyto-IL-15 derived from protein purified from inclusion bodies (cyto-IL-15 Gen). When mild denaturing conditions were used for purification, the largest amount of IL-15 was collected from the wash fraction and a smaller amount from inclusion bodies. The protein from the wash fraction was mainly present as a monomer, whereas the one from inclusion bodies formed homodimers and higher complexes. After cytotopic modification, the purified IL-showed great efficacy in delaying prostate tumor growth (∼50%) and increased mice survival by ∼1.8-fold compared with vehicle. This study demonstrates an alternative, inexpensive and efficient method to produce and purify a modified version of IL-15 using mild denaturing conditions. This IL-15, when cytotopically modified, showed great efficacy as a monotherapy in prostate tumors in mice further highlighting the potential of IL-15 as a cancer immunotherapy.

4.
Front Oncol ; 11: 621550, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777767

RESUMO

Prostate cancer is the second most commonly diagnosed cancer in men with mortality rates, overtaking those for breast cancer in the last 2 years in the UK. Despite advances in prostate cancer treatments, over 25% of men do not survive over 5 years with advanced disease. Due to the success of immunotherapies in treating other cancers, this treatment modality has been investigated for Prostate cancer, however, the sole FDA approved immunotherapy so far (Provenge™) only extends life by a few months. Therefore, finding immunotherapeutic agents to treat prostate cancer is of major interest. Our group has previously shown that Interleukin-15 (IL-15), unlike other therapeutic cytokines such as IL-2 and IL-12, can stimulate expansion and activity of CD8 T cells and NK cells in vitro when they are exposed to prostate cancer cells, while studies in mice have shown a 50% reduction in tumor size with no apparent toxicity. In this study, we aim to examine potencies of IL-15 in combination with a cyclic dinucleotide (CDN) that activates the Stimulator of Interferon-Gene (STING) receptor. Selected CDNs (also known as STING agonists) have previously been shown to activate both T cells and dendritic cells through STING. We hypothesize that the combination of STING agonists and IL-15 can additively increase NK and T cell activity as they act to increase type I interferons (IFNs) through STING activation and IFN-γ through IL-15. In prostate cancer-lymphocyte co-cultures we now show that combination of IL-15 and the STING agonist ADU-S100 analog induces a marked killing of cancer cells above that seen with IL-15 or ADU-S100 alone. We show that this is related to a potent activation of NK cells resulting in increased perforin and CD69 expression, and up to a 13-fold increase in IFNγ secretion in the co-cultures. NK cells are responsible for killing of the cancer cells, as shown by a lack of cytotoxicity in NK depleted lymphocyte-tumor cell co-cultures, or in co-cultures of B and T cells with tumor cells. In summary, we propose that the combination of IL-15 and the sting agonist ADU-S100 analog may be potently effective in treatment of prostate cancer.

5.
Immunotargets Ther ; 9: 115-130, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32802803

RESUMO

BACKGROUND: The prostate cancer microenvironment is highly immunosuppressive; immune cells stimulated in the periphery by systemic immunotherapies will be rendered inactive once entering this environment. Immunotherapies for prostate cancer need to break this immune tolerance. We have previously identified interleukin-15 (IL-15) as the only cytokine tested that activates and expands immune cells in the presence of prostate cancer cells. In the current study, we aimed to identify a method of boosting the efficacy of IL-15 in prostate cancer. METHODS: We engineered, by conjugation to a myristoylated peptide, a membrane-localising form of IL-15 (cyto-IL-15) and the checkpoint inhibitor antibodies cytotoxic T lymphocyte antigen 4 (CTLA-4) and programmed death ligand 1 (PD-L1) (cyto-abs) to enable them to bind to cell surfaces by non-specific anchoring to the phospholipid bilayer. The efficacy of these agents was investigated by intratumoral administration either alone (cyto-IL-15 or cyto-abs) or in combination (cyto-combo) in subcutaneous TRAMP-C2 prostate tumors in C57BL/6J mice and compared with their non-modified equivalents in vivo. Following the survival endpoint, histological analyses and RNA sequencing were performed on the tumors. RESULTS: Intratumoral injection of cyto-IL-15 or cyto-combo delayed tumor growth by 50% and increased median survival to 28 and 25 days, respectively, compared with vehicle (17 days), whereas non-modified IL-15 or antibodies alone had no significant effects on tumor growth or survival. Histological analysis showed that cyto-IL-15 and cyto-combo increased necrosis and infiltration of natural killer (NK) cells and CD8 T cells in the tumors compared with vehicle and non-modified agents. Overall, the efficacy of cyto-combo was not superior to that of cyto-IL-15 alone. CONCLUSION: We have demonstrated that intratumoral injection of cyto-IL-15 leads to prostate cancer growth delay, induces tumor necrosis and increases survival. Hence, cytotopic modification in combination with intratumoral injection appears to be a promising novel approach for prostate cancer immunotherapy.

6.
Front Immunol ; 11: 594620, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33537030

RESUMO

Interleukin-15 (IL-15) is a cytokine that has been shown to expand CD8 T cell and natural killer (NK) cell populations, and therefore has potential for potentiating adoptive immune cell therapy for cancer. Previously, IL-15 has been shown to induce proliferation of CD8 memory T cells through activation of telomerase. Here, we investigated whether telomerase is also activated during the IL-15 mediated proliferation of NK and NKT-like (CD56+CD3+) cells. We also examined the extent that each of the three signaling pathways known to be stimulated by IL-2/IL-15 (JAK-STAT, PI3K-AKT Ras-RAF/MAPK) were activated and involved in the telomerase expression in the three cell types NK, NKT, or CD8 T cells. To assess cell proliferation and doubling, peripheral blood mononuclear cells (PBMCs) or isolated NK, NKT-like or CD8 T cells were incubated with varying concentrations of IL-15 or IL-2 for 7 days. CD8 T, NK, and NKT cell expansion was determined by fluorophore-conjugated antibody staining and flow cytometry. Cell doubling was investigated using carboxyfluorescein-succinimidyl-ester (CFSE). Telomerase expression was investigated by staining cells with anti-telomerase reverse transcriptase (anti-TERT). Telomerase activity in CD56+ and CD8 T cells was also measured via Telomerase Repeat Amplification Protocol (TRAP). Analysis of cellular expansion, proliferation and TERT expression concluded that IL-15 increased cellular growth of NK, NKT, and CD8 T cells more effectively than IL-2 using low or high doses. IL-15, increased TERT expression in NK and NKT cells by up to 2.5 fold, the same increase seen in CD8 T cells. IL-2 had effects on TERT expression only at high doses (100-1000 ng/ml). Proteome profiling identified that IL-15 activated selected signaling proteins in the three pathways (JAK-STAT, PI3K-AKT, Ras-MAPK) known to mediate IL-2/IL-15 signaling, more strongly than IL-2. Evaluation by signaling pathway inhibitors revealed that JAK/STAT and PI3K/AKT pathways are important in IL-15's ability to upregulate TERT expression in NK and NKT cells, whereas all three pathways were involved in CD8 T cell TERT expression. In conclusion, this study shows that IL-15 potently stimulates TERT upregulation in NK and NKT cells in addition to CD8 T cells and is therefore a valuable tool for adoptive cell therapies.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Regulação Enzimológica da Expressão Gênica/imunologia , Interleucina-15/imunologia , Células Matadoras Naturais/imunologia , Células T Matadoras Naturais/imunologia , Telomerase/imunologia , Regulação para Cima/imunologia , Humanos
7.
BJU Int ; 125(1): 89-102, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31392791

RESUMO

OBJECTIVES: To identify cytokines that can activate and expand NK cells in the presence of prostate cancer cells in order to determine whether these agents may be useful in future intra-tumoural administration in pre-clinical and clinical prostate cancer trials. MATERIALS AND METHODS: Lymphocytes isolated from normal donor blood were set up in co-cultures with either cancer or non-cancerous prostate cell lines, together with each of the cytokines interleukin (IL)-2, IL-12, IL-15, interferon (IFN)-γ or IL-21 for a period of 7 days. Then, expansion of NK cells, NKT cells and CD8 T cells was measured by flow cytometry and compared with the expansion of the same cells in the absence of prostate cells. The cytotoxic activity of NK cells, as measured by perforin and tumour cell killing, was also assessed. NK cell receptors and their corresponding ligands on prostate tumour cells were analysed to determine whether any of these were modulated by co-culture. The role of the tumour-secreted heat shock proteins HSP90 and HSP70 in the expansion of NK cells in the co-cultures was also investigated because of their effects on NK and CD8 T-cell activation. RESULTS: We showed that, among a panel of cytokines known to cause NK cell activation and expansion, only IL-15 could actively induce expansion of NK, NKT and CD8 T cells in the presence of prostate cancer cell lines. Furthermore, the expansion of NK cells was far greater (up to 50% greater) in the presence of the cancer cells (LNCaP, PC3) than when lymphocytes were incubated alone. In contrast, non-cancerous cell lines (PNT2 and WPMY-1) did not exert any expansion of NK cells. The cytolytic activity of the NK cells, as measured by perforin, CD107a and killing of tumour cells, was also greatest in co-cultures with IL-15. Examination of NK cell receptors shows that NKG2D is upregulated to a greater degree in the presence of prostate cancer cells, compared with the upregulation with IL-15 in lymphocytes alone. However, blocking of NKG2D does not inhibit the enhanced expansion of NK cells in the presence of tumour cells. CONCLUSIONS: Among a panel of NK cell-activating cytokines, IL-15 was the only cytokine that could stimulate expansion of NK cells in the presence of prostate cancer cells; therefore IL-15 may be a good candidate for novel future intra-tumoural therapy of the disease.


Assuntos
Interleucina-15/fisiologia , Células Matadoras Naturais/fisiologia , Neoplasias da Próstata/patologia , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Masculino
9.
Cytokine Growth Factor Rev ; 30: 113-7, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27066918

RESUMO

Hairy and enhancer of split homolog-1 (HES1) is a part of an extensive family of basic helix-loop-helix (bHLH) proteins and plays a crucial role in the control and regulation of cell cycle, proliferation, cell differentiation, survival and apoptosis in neuronal, endocrine, T-lymphocyte progenitors as well as various cancers. HES1 is a transcription factor which is regulated by the NOTCH, Hedgehog and Wnt signalling pathways. Aberrant expression of these pathways is a common feature of cancerous cells. There appears to be a fine and complicated crosstalk at the molecular level between the various signalling pathways and HES1, which contributes to its effects on the immune response and cancers such as leukaemia. Several mechanisms have been proposed, including an enhanced invasiveness and metastasis by inducing epithelial mesenchymal transition (EMT), in addition to its strict requirement for tumour cell survival. In this review, we summarize the current biology and molecular mechanisms as well as its use as a clinical target in cancer therapeutics.


Assuntos
Fatores de Transcrição HES-1/imunologia , Fatores de Transcrição HES-1/metabolismo , Animais , Citocinas/imunologia , Humanos , Neoplasias/metabolismo
10.
Br J Cancer ; 114(11): 1235-42, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27115470

RESUMO

BACKGROUND: WFDC1/Prostate stromal 20 (ps20) is a small secreted protein highly expressed within the prostate stroma. WFDC1/ps20 expression is frequently downregulated or lost in prostate cancer (PCa) and ps20 has demonstrated growth-suppressive functions in numerous tumour model systems, although the mechanisms of this phenomenon are not understood. METHODS: Ps20 was cloned and overexpressed in DU145, PC3, LNCaP and WPMY-1 cells. Cellular growth, cell cycle and apoptosis were characterised. WPMY-1 stromal cells expressing ps20 were characterised by transcriptome microarray and the function of WPMY-1 conditioned media on growth of PCa cell lines was assessed. RESULTS: Prostrate stromal 20 expression enhanced the proliferation of LNCaP cells, whereas stromal WPMY-1 cells were inhibited and underwent increased apoptosis. Prostrate stromal 20-expressing WPMY-1 cells secrete a potently proapoptotic conditioned media. Prostrate stromal 20 overexpression upregulates expression of cyclooxygenase-2 (COX-2) in LNCaP and WPMY-1 cells, and induces expression of a growth-suppressive phenotype, which inhibits proliferation of PCa cells by ps20-expressing WPMY-1 conditioned media. This growth suppression was subsequently shown to be dependent on COX-2 function. CONCLUSIONS: This work posits that expression of ps20 in the prostate stroma can regulate growth of epithelial and other tissues through the prostaglandin synthase pathway, and thereby restricts development and progression of neoplasms. This provides a rational for selective pressure against ps20 expression in tumour- associated stroma.


Assuntos
Adenocarcinoma/metabolismo , Apoptose/fisiologia , Ciclo-Oxigenase 2/fisiologia , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/fisiologia , Comunicação Parácrina , Neoplasias da Próstata/metabolismo , Proteínas/fisiologia , Células Estromais/metabolismo , Adenocarcinoma/patologia , Apoptose/genética , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/farmacologia , Ciclo-Oxigenase 2/biossíntese , Ciclo-Oxigenase 2/genética , Indução Enzimática/genética , Matriz Extracelular/metabolismo , Humanos , Masculino , Proteínas de Neoplasias/genética , Neoplasias da Próstata/patologia , Isoformas de Proteínas/fisiologia , Proteínas/genética , Proteínas Recombinantes de Fusão/metabolismo , Microambiente Tumoral
11.
Biochem Biophys Rep ; 7: 328-337, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28955923

RESUMO

Whey-acidic-protein (WAP) four-disulphide core (WFDC) proteins have important roles in the regulation of innate immunity, anti-microbial function, and the inhibition of inflammatory proteases at mucosal surfaces. It was recently demonstrated that the WFDC protein, prostate stromal 20 (ps20), encoded by the WFDC1 gene, is a potent growth inhibitory factor, and shares with other WFDC proteins the ability to modulate wound healing processes and immune responses to viral infections. However, ps20 remains relatively uncharacterised at the protein level. Using a panel of ps20 antibodies for western-blotting (WB), ELISA and immunoaffinity purification, we isolated, biochemically characterised and tested ps20 preparations for three biological properties: (i) interactions with glycosaminoglycans (GAG) (ii) inhibition of cell proliferation, and (iii) transglutaminase2 (TG2) mediated crosslinking of ps20 to fibronectin, a process implicated in wound healing. We show herein that ps20 preparations contain multiple molecular forms including full-length ps20 (resolving at ≈27 kDa), an exon 3 truncated form (≈22 kDa) that lacks aa113-140, and variable amounts of a putatively cleaved lower MW (≈15-17 kDa) species. Untagged purified ps20 preparations containing a mixture of these forms are biologically active in significantly suppressing prostate cell proliferation. We show that one mechanism by which lower LMW forms of ps20 arise is through cathepsin L (CL) cleavage, and confirm that CL cleaves ps20 at the C-terminus, but this does not inhibit its growth inhibitory function. However, CL cleavage abrogated the interaction between ps20 and solid-phase fibronectin. Therefore, we demonstrate for the first time that LMW forms of ps20 that lack a C-terminal immunogenic epitope can arise through CL cleavage and this cleavage impairs multimerisation and potential capacity to cross-link to ECM, but not the capacity of ps20 to inhibit cell proliferation. We propose that ps20 like other WFDC proteins can become associated with GAGs and the ECM. Furthermore, we suggest post-translational processing and cleavage of ps20 is required to generate functional protein species, and TG2 mediated crosslinking and CL cleavage form components of a ps20 regulatory apparatus.

12.
Oncoimmunology ; 4(4): e1002720, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26155387

RESUMO

Cells used in adoptive cell-transfer immunotherapies against cancer include dendritic cells (DCs), natural-killer cells, and CD8+ T-cells. These cells may have limited efficacy due to their lifespan, activity, and immunosuppressive effects of tumor cells. Therefore, increasing longevity and activity of these cells may boost their efficacy. Four cytokines that can extend immune effector-cell longevity are IL-2, IL-7, IL-21, and IL-15. This review will discuss current knowledge on effector-cell lifespans and the mechanisms by which IL-2, IL-7, IL-15, and IL-21 can extend effector-cell longevity. We will also discuss how lifespan and efficacy of these cells can be regulated to allow optimal clinical benefits.

14.
Immunology ; 139(3): 377-85, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23374145

RESUMO

The IMiDs(®) immunomodulatory compounds lenalidomide and pomalidomide are agents with anti-inflammatory, immunomodulatory and anti-cancer activity. An excellent success rate has been shown for multiple myeloma in phase I/II clinical trials leading to Food and Drug Administration approval of lenalidomide. One mechanism by which these drugs could enhance anti-tumour immunity may be through enhanced dendritic cell (DC) function. Thalidomide, a compound structurally related to lenalidomide and pomalidomide, is known to enhance DC function, and we have investigated whether its analogues, pomalidomide and lenalidomide, also have functional effects on DCs. We used mouse bone marrow-derived DCs treated with 5 or 10 µm pomalidomide, or lenalidomide from day 1 of culture. Treatment with IMiD(®) immunomodulatory compounds increased expression of Class I (H2-Kb), CD86, and pomalidomide also increased Class II (I-Ab) expression in bone marrow-derived DCs, as measured by flow cytometry. Fluorescent bead uptake was increased by up to 45% when DCs were treated with 5 or 10 µm pomalidomide or lenalidomide compared with non-treated DCs. Antigen presentation assays using DCs primed with ovalbumin, and syngeneic T cells from transgenic OTI and OTII mice (containing MHC restricted, ovalbumin-specific, T cells) showed that both pomalidomide and lenalidomide effectively increased CD8(+) T-cell cross-priming (by up to 47%) and that pomalidomide alone was effective in increasing CD4(+) T-cell priming (by 30%). Our observations suggest that pomalidomide and lenalidomide enhance tumour antigen uptake by DCs with an increased efficacy of antigen presentation, indicating a possible use of these drugs in DC vaccine therapies.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Apresentação Cruzada/imunologia , Células Dendríticas/efeitos dos fármacos , Talidomida/análogos & derivados , Animais , Apresentação de Antígeno/efeitos dos fármacos , Apresentação de Antígeno/imunologia , Antígenos de Neoplasias/imunologia , Células Cultivadas , Células Dendríticas/imunologia , Feminino , Fatores Imunológicos/imunologia , Fatores Imunológicos/farmacologia , Lenalidomida , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Talidomida/imunologia , Talidomida/farmacologia
15.
Apoptosis ; 17(2): 164-73, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22109882

RESUMO

1α,25-Dihydroxyvitamin D3, (1,25-D3) the biologically active form of vitamin-D, is well established as a cancer cell growth inhibitor in addition to maintaining bone mineralization. In breast cancer cells, inhibitory effects on angiogenesis, and metastasis have been observed together with enhancement of apoptosis and induction of cell cycle arrest. There is a correlation between vitamin-D receptor expression on breast cancer cells and patient survival. However vitamin-D resistance and hypercalcaemia are key limiting factors in clinical use. The IMiD(®) immunomodulatory drug lenalidomide, (Revlimid(®), CC-5013) used in myeloma, can also modulate apoptotic and growth signalling. We studied whether lenalidomide treated breast cancer cells would acquire sensitivity to 1,25-D3 with resulting growth inhibition. The cell lines MCF-12A, MCF-7 and MDA-MB-231, representing non-tumorogenic, tumorogenic, and vitamin-D resistant lines respectively were treated with lenalidomide and/or 1,25-D3(at 100 nM). Whereas lenalidomide alone had no effect on cell growth, a 50% inhibition of cell growth by 1,25-D3 was achieved with additional 1 µM lenalidomide in resistant cells. This effect was through apoptosis measured by PARP cleavage and annexin-V expression. An apoptosis protein array showed that the 1,25-D3 and lenalidomide combination increased pro-apoptotic proteins (phosphorylated p53) and decreased BCL-2 expression. BCL-2 inhibition is proposed as a mechanism of action for the combined drugs in the MDA-MB-231 cell line. In vitamin D resistant cell lines MCF-7VDR and HBL-100 where the combination does not affect BCL-2-no inhibitory effect is observed. These results demonstrate the potential for the combinatorial use of lenalidomide and 1,25-D3 for vitamin D refractory tumours.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias da Mama/metabolismo , Calcitriol/administração & dosagem , Talidomida/análogos & derivados , Apoptose/efeitos dos fármacos , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lenalidomida , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Talidomida/administração & dosagem , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
16.
Anticancer Res ; 31(11): 3747-56, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22110196

RESUMO

Gemcitabine is currently the leading therapeutic for pancreatic cancer treatment, despite growing resistance. Studying the mechanisms that underlie gemcitabine resistance and discovery of agents that increase the tumour sensitivity to gemcitabine, is therefore desirable. The thalidomide analogue lenalidomide has been approved for use in multiple myeloma in combination with dexamethasone. Although it is primarily immunomodulatory, it also has direct effects on tumours. We investigated the sensitivity of three pancreatic cell lines PANC-1, MIA-PaCa-2 and BxPC-3 to gemcitabine. We observed that PANC-1 cells display most resistance to gemcitabine and MIA-PaCa-2 are most sensitive. Western blot analysis revealed that PANC-1 exhibits high phosphorylated extracellular signal-regulated kinase (pERK) expression, whereas MIA-PaCa-2 displays low expression. Combining gemcitabine and lenalidomide reduced the IC(50) of gemcitabine up to 40% (p<0.05). Western blot analysis showed lenalidomide significantly reduced pERK expression in all cell lines (p<0.05). It was hypothesised that gemcitabine sensitivity could be increased through combination with a pERK-reducing agent. The mitogen-activated kinase (MEK) specific inhibitor U0126 was used on PANC-1 cells to restore gemcitabine sensitivity. U0126 significantly increased cell killing by gemcitabine from 30% to 60% (p<0.001). Sensitive MIA-PaCa-2 cells were transfected with a constitutively active MEK mutant to reduce gemcitabine sensitivity. Transfection resulted in a significant reduction in cell killing by gemcitabine from 54-16% (p<0.05). These results provide evidence that ERK activity underlies sensitivity to gemcitabine and that addition of an agent that reduces this activity, such as lenalidomide, enhances gemcitabine efficacy. In conclusion, these results provide an understanding of gemcitabine resistance and could be used to predict successful combination therapies.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Talidomida/análogos & derivados , Antineoplásicos/farmacologia , Western Blotting , Butadienos/farmacologia , Desoxicitidina/farmacologia , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Lenalidomida , Nitrilas/farmacologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fosforilação/efeitos dos fármacos , Talidomida/farmacologia , Células Tumorais Cultivadas , Gencitabina
17.
Biochem Soc Trans ; 39(5): 1433-6, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21936828

RESUMO

Prostate adenocarcinoma is present in over 80% of men over the age of 80 and is by far the most common cancer of men. Although radical prostatectomy is curative in early disease, the risks of incontinence and impotence can affect the quality of life of patients. Early intervention with localized immunotherapy represents a potential solution as lymphocyte infiltration does occur in prostate cancer lesions, and immunotherapy with dendritic cell vaccines can significantly increase survival in late stage disease. However, lymphocytic infiltrates in the cancerous prostates have an anergic character arising from the suppressive effects of the microenvironment resulting from a conversion of effector cells into regulatory T-cells. Although TGFß (transforming growth factor ß) and IL-10 (interleukin-10) are known to be strong suppressor molecules associated with prostate cancer, they are among many possible suppressive factors. We discuss the possible role of alternative suppressor molecules, including the WAP (whey acidic protein) homologue ps20 that is expressed on prostate stroma and other WAP domain-containing proteins in the immunosuppressive prostate cancer milieu and discuss novel immunotherapeutic strategies to combat this disease.


Assuntos
Imunoterapia/métodos , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/terapia , Proteínas/imunologia , Humanos , Masculino , Neoplasias da Próstata/patologia , Microambiente Tumoral
18.
Future Oncol ; 6(9): 1479-84, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20919830

RESUMO

Lenalidomide (REVLIMID®) CC-5013 (Celgene, NJ, USA) is approved, in both the USA and Europe, in combination with dexamethasone for the treatment of multiple myeloma patients who have received at least one prior therapy, and is rapidly being accepted worldwide for this condition. Lenalidomide is also approved in the USA and Canada for use in transfusion-dependent anemia in patients with low- and intermediate-1-risk myelodysplastic syndromes associated with del (5q) abnormality with or without additional abnormalities. Lenalidomide is an IMiD® immunomodulatory compound, incorporating structural modification of the drug thalidomide, which is active against a wide variety of autoimmune Th-2-dependent disorders, including erythema nodosum of leprosy, leishmaniasis, as well as severe ulcerative disorders such as Behcet's syndrome. Unfortunately, long-term use of thalidomide is limited, particularly by neurotoxicity. To date, results suggest that lenalidomide is more active than thalidomide and does not cause the neurotoxicity seen with thalidomide. Lenalidomide has multiple properties, including anti-inflammatory, antiangiogenic and costimulatory effects, as well as being able to inhibit T-regulatory cells, all of which are properties deemed desirable for anticancer activity. This article covers the evidence that lenalidomide may have a major role in the treatment and control of many cancer types other than del (5q) myelodysplastic syndrome and multiple myeloma.


Assuntos
Antineoplásicos/uso terapêutico , Imunomodulação , Neoplasias/tratamento farmacológico , Talidomida/análogos & derivados , Ensaios Clínicos como Assunto , Humanos , Fatores Imunológicos/uso terapêutico , Lenalidomida , Talidomida/uso terapêutico
19.
Cancer Inform ; 9: 31-5, 2010 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-20234771

RESUMO

The discovery of effective cancer treatments is a key goal for pharmaceutical companies. However, the current costs of bringing a cancer drug to the market in the USA is now estimated at $1 billion per FDA approved drug, with many months of research at the bench and costly clinical trials. A growing number of papers highlight the use of data mining tools to determine associations between drugs, genes or protein targets, and possible mechanism of actions or therapeutic efficacy which could be harnessed to provide information that can refine or direct new clinical cancer studies and lower costs. This report reviews the paper by R.J. Epstein, which illustrates the potential of text mining using Boolean parameters in cancer drug discovery, and other studies which use alternative data mining approaches to aid cancer research.

20.
Mol Biol Rep ; 37(4): 1801-14, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19597962

RESUMO

Thalidomide and lenalidomide are FDA approved for the treatment of multiple myeloma, and along with pomalidomide are being investigated in a variety of other cancers. Although these agents display immunomodulatory, anti-angiogenic and anti-apoptotic effects, little is known about the primary mode of therapeutic action in patients with cancer. This paper describes a microarray study of the in vitro and in vivo effects of these drugs, and contrasts the difference in gene profiles achieved in the two models. In the current study, Agilent whole mouse genome oligonucleotide microarrays (44 K) were used to examine alterations in gene expression of colorectal cancer cells after treatment. Venn analysis revealed a divergence of gene signature for pomalidomide and lenalidomide, which although similar in vitro, different in vivo. Several clusters of genes involved in various cellular processes such as immune response, cell signalling and cell adhesion were altered by treatment, and common to the three drugs. Notably, the expressions of linked genes within the Notch/Wnt signalling pathway, including kremen2 and dtx4, highlighted a possible novel mechanistic pathway for these drugs. This study also showed that gene signatures were not greatly divergent in the models, and recapitulated the complex nature of these drugs. Overall, these microarray studies highlighted the diversity of this class of drug, which have effects ranging from cell signalling to translation initiation.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fatores Imunológicos/uso terapêutico , Análise de Sequência com Séries de Oligonucleotídeos , Animais , Biomarcadores/metabolismo , Western Blotting , Linhagem Celular Tumoral , Análise por Conglomerados , Feminino , Genes Neoplásicos/genética , Fatores Imunológicos/farmacologia , Lenalidomida , Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Controle de Qualidade , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Talidomida/análogos & derivados , Talidomida/farmacologia , Talidomida/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA