Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 15: 1353553, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505828

RESUMO

Post-genomic implementations have expanded the experimental strategies to identify elements involved in the regulation of transcription initiation. Here, we present for the first time a detailed analysis of the sources of knowledge supporting the collection of transcriptional regulatory interactions (RIs) of Escherichia coli K-12. An RI groups the transcription factor, its effect (positive or negative) and the regulated target, a promoter, a gene or transcription unit. We improved the evidence codes so that specific methods are incorporated and classified into independent groups. On this basis we updated the computation of confidence levels, weak, strong, or confirmed, for the collection of RIs. These updates enabled us to map the RI set to the current collection of HT TF-binding datasets from ChIP-seq, ChIP-exo, gSELEX and DAP-seq in RegulonDB, enriching in this way the evidence of close to one-quarter (1329) of RIs from the current total 5446 RIs. Based on the new computational capabilities of our improved annotation of evidence sources, we can now analyze the internal architecture of evidence, their categories (experimental, classical, HT, computational), and confidence levels. This is how we know that the joint contribution of HT and computational methods increase the overall fraction of reliable RIs (the sum of confirmed and strong evidence) from 49% to 71%. Thus, the current collection has 3912 reliable RIs, with 2718 or 70% of them with classical evidence which can be used to benchmark novel HT methods. Users can selectively exclude the method they want to benchmark, or keep for instance only the confirmed interactions. The recovery of regulatory sites in RegulonDB by the different HT methods ranges between 33% by ChIP-exo to 76% by ChIP-seq although as discussed, many potential confounding factors limit their interpretation. The collection of improvements reported here provides a solid foundation to incorporate new methods and data, and to further integrate the diverse sources of knowledge of the different components of the transcriptional regulatory network. There is no other genomic database that offers this comprehensive high-quality architecture of knowledge supporting a corpus of transcriptional regulatory interactions.

2.
Nucleic Acids Res ; 52(D1): D255-D264, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37971353

RESUMO

RegulonDB is a database that contains the most comprehensive corpus of knowledge of the regulation of transcription initiation of Escherichia coli K-12, including data from both classical molecular biology and high-throughput methodologies. Here, we describe biological advances since our last NAR paper of 2019. We explain the changes to satisfy FAIR requirements. We also present a full reconstruction of the RegulonDB computational infrastructure, which has significantly improved data storage, retrieval and accessibility and thus supports a more intuitive and user-friendly experience. The integration of graphical tools provides clear visual representations of genetic regulation data, facilitating data interpretation and knowledge integration. RegulonDB version 12.0 can be accessed at https://regulondb.ccg.unam.mx.


Assuntos
Bases de Dados Genéticas , Escherichia coli K12 , Regulação Bacteriana da Expressão Gênica , Biologia Computacional/métodos , Escherichia coli K12/genética , Internet , Transcrição Gênica
3.
bioRxiv ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37163020

RESUMO

Post-genomic implementations have expanded the experimental strategies to identify elements involved in the regulation of transcription initiation. As new methodologies emerge, a natural step is to compare their results with those from established methodologies, such as the classic methods of molecular biology used to characterize transcription factor binding sites, promoters, or transcription units. In the case of Escherichia coli K-12, the best-studied microorganism, for the last 30 years we have continuously gathered such knowledge from original scientific publications, and have organized it in two databases, RegulonDB and EcoCyc. Furthermore, since RegulonDB version 11.0 (1), we offer comprehensive datasets of binding sites from chromatin immunoprecipitation combined with sequencing (ChIP-seq), ChIP combined with exonuclease digestion and next-generation sequencing (ChIP-exo), genomic SELEX screening (gSELEX), and DNA affinity purification sequencing (DAP-seq) HT technologies, as well as additional datasets for transcription start sites, transcription units and RNA sequencing (RNA-seq) expression profiles. Here, we present for the first time an analysis of the sources of knowledge supporting the collection of transcriptional regulatory interactions (RIs) of E. coli K-12. An RI is formed by the transcription factor, its positive or negative effect on a promoter, a gene or transcription unit. We improved the evidence codes so that the specific methods are described, and we classified them into seven independent groups. This is the basis for our updated computation of confidence levels, weak, strong, or confirmed, for the collection of RIs. We compare the confidence levels of the RI collection before and after adding HT evidence illustrating how knowledge will change as more HT data and methods appear in the future. Users can generate subsets filtering out the method they want to benchmark and avoid circularity, or keep for instance only the confirmed interactions. The comparison of different HT methods with the available datasets indicate that ChIP-seq recovers the highest fraction (>70%) of binding sites present in RegulonDB followed by gSELEX, DAP-seq and ChIP-exo. There is no other genomic database that offers this comprehensive high-quality anatomy of evidence supporting a corpus of transcriptional regulatory interactions.

4.
EcoSal Plus ; 11(1): eesp00022023, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37220074

RESUMO

EcoCyc is a bioinformatics database available online at EcoCyc.org that describes the genome and the biochemical machinery of Escherichia coli K-12 MG1655. The long-term goal of the project is to describe the complete molecular catalog of the E. coli cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of E. coli. EcoCyc is an electronic reference source for E. coli biologists and for biologists who work with related microorganisms. The database includes information pages on each E. coli gene product, metabolite, reaction, operon, and metabolic pathway. The database also includes information on the regulation of gene expression, E. coli gene essentiality, and nutrient conditions that do or do not support the growth of E. coli. The website and downloadable software contain tools for the analysis of high-throughput data sets. In addition, a steady-state metabolic flux model is generated from each new version of EcoCyc and can be executed online. The model can predict metabolic flux rates, nutrient uptake rates, and growth rates for different gene knockouts and nutrient conditions. Data generated from a whole-cell model that is parameterized from the latest data on EcoCyc are also available. This review outlines the data content of EcoCyc and of the procedures by which this content is generated.


Assuntos
Escherichia coli K12 , Proteínas de Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli K12/genética , Bases de Dados Genéticas , Software , Biologia Computacional , Proteínas de Escherichia coli/metabolismo
5.
Microb Genom ; 8(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35584008

RESUMO

Genomics has set the basis for a variety of methodologies that produce high-throughput datasets identifying the different players that define gene regulation, particularly regulation of transcription initiation and operon organization. These datasets are available in public repositories, such as the Gene Expression Omnibus, or ArrayExpress. However, accessing and navigating such a wealth of data is not straightforward. No resource currently exists that offers all available high and low-throughput data on transcriptional regulation in Escherichia coli K-12 to easily use both as whole datasets, or as individual interactions and regulatory elements. RegulonDB (https://regulondb.ccg.unam.mx) began gathering high-throughput dataset collections in 2009, starting with transcription start sites, then adding ChIP-seq and gSELEX in 2012, with up to 99 different experimental high-throughput datasets available in 2019. In this paper we present a radical upgrade to more than 2000 high-throughput datasets, processed to facilitate their comparison, introducing up-to-date collections of transcription termination sites, transcription units, as well as transcription factor binding interactions derived from ChIP-seq, ChIP-exo, gSELEX and DAP-seq experiments, besides expression profiles derived from RNA-seq experiments. For ChIP-seq experiments we offer both the data as presented by the authors, as well as data uniformly processed in-house, enhancing their comparability, as well as the traceability of the methods and reproducibility of the results. Furthermore, we have expanded the tools available for browsing and visualization across and within datasets. We include comparisons against previously existing knowledge in RegulonDB from classic experiments, a nucleotide-resolution genome viewer, and an interface that enables users to browse datasets by querying their metadata. A particular effort was made to automatically extract detailed experimental growth conditions by implementing an assisted curation strategy applying Natural language processing and machine learning. We provide summaries with the total number of interactions found in each experiment, as well as tools to identify common results among different experiments. This is a long-awaited resource to make use of such wealth of knowledge and advance our understanding of the biology of the model bacterium E. coli K-12.


Assuntos
Escherichia coli K12 , Escherichia coli , Escherichia coli/genética , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Regulação Bacteriana da Expressão Gênica , Óperon/genética , Reprodutibilidade dos Testes
6.
Front Bioeng Biotechnol ; 10: 823240, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237580

RESUMO

In free-living bacteria, the ability to regulate gene expression is at the core of adapting and interacting with the environment. For these systems to have a logic, a signal must trigger a genetic change that helps the cell to deal with what implies its presence in the environment; briefly, the response is expected to include a feedback to the signal. Thus, it makes sense to think of genetic sensory mechanisms of gene regulation. Escherichia coli K-12 is the bacterium model for which the largest number of regulatory systems and its sensing capabilities have been studied in detail at the molecular level. In this special issue focused on biomolecular sensing systems, we offer an overview of the transcriptional regulatory corpus of knowledge for E. coli that has been gathered in our database, RegulonDB, from the perspective of sensing regulatory systems. Thus, we start with the beginning of the information flux, which is the signal's chemical or physical elements detected by the cell as changes in the environment; these signals are internally transduced to transcription factors and alter their conformation. Signals transduced to effectors bind allosterically to transcription factors, and this defines the dominant sensing mechanism in E. coli. We offer an updated list of the repertoire of known allosteric effectors, as well as a list of the currently known different mechanisms of this sensing capability. Our previous definition of elementary genetic sensory-response units, GENSOR units for short, that integrate signals, transport, gene regulation, and the biochemical response of the regulated gene products of a given transcriptional factor fit perfectly with the purpose of this overview. We summarize the functional heterogeneity of their response, based on our updated collection of GENSORs, and we use them to identify the expected feedback as part of their response. Finally, we address the question of multiple sensing in the regulatory network of E. coli. This overview introduces the architecture of sensing and regulation of native components in E.coli K-12, which might be a source of inspiration to bioengineering applications.

7.
Front Microbiol ; 12: 711077, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394059

RESUMO

The EcoCyc model-organism database collects and summarizes experimental data for Escherichia coli K-12. EcoCyc is regularly updated by the manual curation of individual database entries, such as genes, proteins, and metabolic pathways, and by the programmatic addition of results from select high-throughput analyses. Updates to the Pathway Tools software that supports EcoCyc and to the web interface that enables user access have continuously improved its usability and expanded its functionality. This article highlights recent improvements to the curated data in the areas of metabolism, transport, DNA repair, and regulation of gene expression. New and revised data analysis and visualization tools include an interactive metabolic network explorer, a circular genome viewer, and various improvements to the speed and usability of existing tools.

8.
Biochim Biophys Acta Gene Regul Mech ; 1864(11-12): 194753, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34461312

RESUMO

The number of published papers in biomedical research makes it rather impossible for a researcher to keep up to date. This is where manually curated databases contribute facilitating the access to knowledge. However, the structure required by databases strongly limits the type of valuable information that can be incorporated. Here, we present Lisen&Curate, a curation system that facilitates linking sentences or part of sentences (both considered sources) in articles with their corresponding curated objects, so that rich additional information of these objects is easily available to users. These sources are going to be offered both within RegulonDB and a new database, L-Regulon. To show the relevance of our work, two senior curators performed a curation of 31 articles on the regulation of transcription initiation of E. coli using Lisen&Curate. As a result, 194 objects were curated and 781 sources were recorded. We also found that these sources are useful to develop automatic approaches to detect objects in articles by observing word frequency patterns and by carrying out an open information extraction task. Sources may help to elaborate a controlled vocabulary of experimental methods. Finally, we discuss our ecosystem of interconnected applications, RegulonDB, L-Regulon, and Lisen&Curate, to facilitate the access to knowledge on regulation of transcription initiation in bacteria. We see our proposal as the starting point to change the way experimentalists connect a piece of knowledge with its evidence using RegulonDB.


Assuntos
Curadoria de Dados/métodos , Bases de Dados Genéticas , Regulação Bacteriana da Expressão Gênica , Iniciação da Transcrição Genética , Escherichia coli/genética
9.
Database (Oxford) ; 20202020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33306798

RESUMO

Transcription factors (TFs) play a main role in transcriptional regulation of bacteria, as they regulate transcription of the genetic information encoded in DNA. Thus, the curation of the properties of these regulatory proteins is essential for a better understanding of transcriptional regulation. However, traditional manual curation of article collections to compile descriptions of TF properties takes significant time and effort due to the overwhelming amount of biomedical literature, which increases every day. The development of automatic approaches for knowledge extraction to assist curation is therefore critical. Here, we show an effective approach for knowledge extraction to assist curation of summaries describing bacterial TF properties based on an automatic text summarization strategy. We were able to recover automatically a median 77% of the knowledge contained in manual summaries describing properties of 177 TFs of Escherichia coli K-12 by processing 5961 scientific articles. For 71% of the TFs, our approach extracted new knowledge that can be used to expand manual descriptions. Furthermore, as we trained our predictive model with manual summaries of E. coli, we also generated summaries for 185 TFs of Salmonella enterica serovar Typhimurium from 3498 articles. According to the manual curation of 10 of these Salmonella typhimurium summaries, 96% of their sentences contained relevant knowledge. Our results demonstrate the feasibility to assist manual curation to expand manual summaries with new knowledge automatically extracted and to create new summaries of bacteria for which these curation efforts do not exist. Database URL: The automatic summaries of the TFs of E. coli and Salmonella and the automatic summarizer are available in GitHub (https://github.com/laigen-unam/tf-properties-summarizer.git).


Assuntos
Escherichia coli K12 , Fatores de Transcrição , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli K12/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
10.
J Biomed Semantics ; 10(1): 8, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118102

RESUMO

BACKGROUND: The ability to express the same meaning in different ways is a well-known property of natural language. This amazing property is the source of major difficulties in natural language processing. Given the constant increase in published literature, its curation and information extraction would strongly benefit from efficient automatic processes, for which corpora of sentences evaluated by experts are a valuable resource. RESULTS: Given our interest in applying such approaches to the benefit of curation of the biomedical literature, specifically that about gene regulation in microbial organisms, we decided to build a corpus with graded textual similarity evaluated by curators and that was designed specifically oriented to our purposes. Based on the predefined statistical power of future analyses, we defined features of the design, including sampling, selection criteria, balance, and size, among others. A non-fully crossed study design was applied. Each pair of sentences was evaluated by 3 annotators from a total of 7; the scale used in the semantic similarity assessment task within the Semantic Evaluation workshop (SEMEVAL) was adapted to our goals in four successive iterative sessions with clear improvements in the agreed guidelines and interrater reliability results. Alternatives for such a corpus evaluation have been widely discussed. CONCLUSIONS: To the best of our knowledge, this is the first similarity corpus-a dataset of pairs of sentences for which human experts rate the semantic similarity of each pair-in this domain of knowledge. We have initiated its incorporation in our research towards high-throughput curation strategies based on natural language processing.


Assuntos
Regulação da Expressão Gênica , Microbiologia , Processamento de Linguagem Natural , Transcrição Gênica/genética
11.
Nucleic Acids Res ; 47(D1): D212-D220, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30395280

RESUMO

RegulonDB, first published 20 years ago, is a comprehensive electronic resource about regulation of transcription initiation of Escherichia coli K-12 with decades of knowledge from classic molecular biology experiments, and recently also from high-throughput genomic methodologies. We curated the literature to keep RegulonDB up to date, and initiated curation of ChIP and gSELEX experiments. We estimate that current knowledge describes between 10% and 30% of the expected total number of transcription factor- gene regulatory interactions in E. coli. RegulonDB provides datasets for interactions for which there is no evidence that they affect expression, as well as expression datasets. We developed a proof of concept pipeline to merge binding and expression evidence to identify regulatory interactions. These datasets can be visualized in the RegulonDB JBrowse. We developed the Microbial Conditions Ontology with a controlled vocabulary for the minimal properties to reproduce an experiment, which contributes to integrate data from high throughput and classic literature. At a higher level of integration, we report Genetic Sensory-Response Units for 200 transcription factors, including their regulation at the metabolic level, and include summaries for 70 of them. Finally, we summarize our research with Natural language processing strategies to enhance our biocuration work.


Assuntos
Biologia Computacional/métodos , Escherichia coli K12/genética , Regulação Bacteriana da Expressão Gênica , Genômica , Ontologia Genética , Redes Reguladoras de Genes , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala
12.
EcoSal Plus ; 8(1)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30406744

RESUMO

EcoCyc is a bioinformatics database available at EcoCyc.org that describes the genome and the biochemical machinery of Escherichia coli K-12 MG1655. The long-term goal of the project is to describe the complete molecular catalog of the E. coli cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of E. coli. EcoCyc is an electronic reference source for E. coli biologists and for biologists who work with related microorganisms. The database includes information pages on each E. coli gene product, metabolite, reaction, operon, and metabolic pathway. The database also includes information on E. coli gene essentiality and on nutrient conditions that do or do not support the growth of E. coli. The website and downloadable software contain tools for analysis of high-throughput data sets. In addition, a steady-state metabolic flux model is generated from each new version of EcoCyc and can be executed via EcoCyc.org. The model can predict metabolic flux rates, nutrient uptake rates, and growth rates for different gene knockouts and nutrient conditions. This review outlines the data content of EcoCyc and of the procedures by which this content is generated.


Assuntos
Bases de Dados Genéticas , Escherichia coli K12/genética , Genoma Bacteriano , Software , Biologia Computacional , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Internet , Análise do Fluxo Metabólico , Redes e Vias Metabólicas/genética , Interface Usuário-Computador
13.
BMC Biol ; 16(1): 91, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115066

RESUMO

BACKGROUND: Our understanding of the regulation of gene expression has benefited from the availability of high-throughput technologies that interrogate the whole genome for the binding of specific transcription factors and gene expression profiles. In the case of widely used model organisms, such as Escherichia coli K-12, the new knowledge gained from these approaches needs to be integrated with the legacy of accumulated knowledge from genetic and molecular biology experiments conducted in the pre-genomic era in order to attain the deepest level of understanding possible based on the available data. RESULTS: In this paper, we describe an expansion of RegulonDB, the database containing the rich legacy of decades of classic molecular biology experiments supporting what we know about gene regulation and operon organization in E. coli K-12, to include the genome-wide dataset collections from 32 ChIP and 19 gSELEX publications, in addition to around 60 genome-wide expression profiles relevant to the functional significance of these datasets and used in their curation. Three essential features for the integration of this information coming from different methodological approaches are: first, a controlled vocabulary within an ontology for precisely defining growth conditions; second, the criteria to separate elements with enough evidence to consider them involved in gene regulation from isolated transcription factor binding sites without such support; and third, an expanded computational model supporting this knowledge. Altogether, this constitutes the basis for adequately gathering and enabling the comparisons and integration needed to manage and access such wealth of knowledge. CONCLUSIONS: This version 10.0 of RegulonDB is a first step toward what should become the unifying access point for current and future knowledge on gene regulation in E. coli K-12. Furthermore, this model platform and associated methodologies and criteria can be emulated for gathering knowledge on other microbial organisms.


Assuntos
Bases de Dados como Assunto , Escherichia coli K12/genética , Regulação Bacteriana da Expressão Gênica , Transcrição Gênica
16.
Database (Oxford) ; 2017(1)2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28365731

RESUMO

Experimentally generated biological information needs to be organized and structured in order to become meaningful knowledge. However, the rate at which new information is being published makes manual curation increasingly unable to cope. Devising new curation strategies that leverage upon data mining and text analysis is, therefore, a promising avenue to help life science databases to cope with the deluge of novel information. In this article, we describe the integration of text mining technologies in the curation pipeline of the RegulonDB database, and discuss how the process can enhance the productivity of the curators. Specifically, a named entity recognition approach is used to pre-annotate terms referring to a set of domain entities which are potentially relevant for the curation process. The annotated documents are presented to the curator, who, thanks to a custom-designed interface, can select sentences containing specific types of entities, thus restricting the amount of text that needs to be inspected. Additionally, a module capable of computing semantic similarity between sentences across the entire collection of articles to be curated is being integrated in the system. We tested the module using three sets of scientific articles and six domain experts. All these improvements are gradually enabling us to obtain a high throughput curation process with the same quality as manual curation.


Assuntos
Curadoria de Dados/métodos , Mineração de Dados/métodos , Bases de Dados Factuais , Regulon/fisiologia , Curadoria de Dados/normas
17.
Nucleic Acids Res ; 45(D1): D543-D550, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27899573

RESUMO

EcoCyc (EcoCyc.org) is a freely accessible, comprehensive database that collects and summarizes experimental data for Escherichia coli K-12, the best-studied bacterial model organism. New experimental discoveries about gene products, their function and regulation, new metabolic pathways, enzymes and cofactors are regularly added to EcoCyc. New SmartTable tools allow users to browse collections of related EcoCyc content. SmartTables can also serve as repositories for user- or curator-generated lists. EcoCyc now supports running and modifying E. coli metabolic models directly on the EcoCyc website.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Metabolismo Energético , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Redes e Vias Metabólicas , Transdução de Sinais , Software , Fatores de Transcrição/metabolismo , Navegador
18.
Artigo em Inglês | MEDLINE | ID: mdl-27589961

RESUMO

Fully automated text mining (TM) systems promote efficient literature searching, retrieval, and review but are not sufficient to produce ready-to-consume curated documents. These systems are not meant to replace biocurators, but instead to assist them in one or more literature curation steps. To do so, the user interface is an important aspect that needs to be considered for tool adoption. The BioCreative Interactive task (IAT) is a track designed for exploring user-system interactions, promoting development of useful TM tools, and providing a communication channel between the biocuration and the TM communities. In BioCreative V, the IAT track followed a format similar to previous interactive tracks, where the utility and usability of TM tools, as well as the generation of use cases, have been the focal points. The proposed curation tasks are user-centric and formally evaluated by biocurators. In BioCreative V IAT, seven TM systems and 43 biocurators participated. Two levels of user participation were offered to broaden curator involvement and obtain more feedback on usability aspects. The full level participation involved training on the system, curation of a set of documents with and without TM assistance, tracking of time-on-task, and completion of a user survey. The partial level participation was designed to focus on usability aspects of the interface and not the performance per se In this case, biocurators navigated the system by performing pre-designed tasks and then were asked whether they were able to achieve the task and the level of difficulty in completing the task. In this manuscript, we describe the development of the interactive task, from planning to execution and discuss major findings for the systems tested.Database URL: http://www.biocreative.org.


Assuntos
Curadoria de Dados/métodos , Mineração de Dados/métodos , Processamento Eletrônico de Dados/métodos
19.
Nucleic Acids Res ; 44(D1): D620-3, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26586805

RESUMO

COLOMBOS is a database that integrates publicly available transcriptomics data for several prokaryotic model organisms. Compared to the previous version it has more than doubled in size, both in terms of species and data available. The manually curated condition annotation has been overhauled as well, giving more complete information about samples' experimental conditions and their differences. Functionality-wise cross-species analyses now enable users to analyse expression data for all species simultaneously, and identify candidate genes with evolutionary conserved expression behaviour. All the expression-based query tools have undergone a substantial improvement, overcoming the limit of enforced co-expression data retrieval and instead enabling the return of more complex patterns of expression behaviour. COLOMBOS is freely available through a web application at http://colombos.net/. The complete database is also accessible via REST API or downloadable as tab-delimited text files.


Assuntos
Bases de Dados Genéticas , Perfilação da Expressão Gênica , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de RNA , Software
20.
Nucleic Acids Res ; 44(D1): D133-43, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26527724

RESUMO

RegulonDB (http://regulondb.ccg.unam.mx) is one of the most useful and important resources on bacterial gene regulation,as it integrates the scattered scientific knowledge of the best-characterized organism, Escherichia coli K-12, in a database that organizes large amounts of data. Its electronic format enables researchers to compare their results with the legacy of previous knowledge and supports bioinformatics tools and model building. Here, we summarize our progress with RegulonDB since our last Nucleic Acids Research publication describing RegulonDB, in 2013. In addition to maintaining curation up-to-date, we report a collection of 232 interactions with small RNAs affecting 192 genes, and the complete repertoire of 189 Elementary Genetic Sensory-Response units (GENSOR units), integrating the signal, regulatory interactions, and metabolic pathways they govern. These additions represent major progress to a higher level of understanding of regulated processes. We have updated the computationally predicted transcription factors, which total 304 (184 with experimental evidence and 120 from computational predictions); we updated our position-weight matrices and have included tools for clustering them in evolutionary families. We describe our semiautomatic strategy to accelerate curation, including datasets from high-throughput experiments, a novel coexpression distance to search for 'neighborhood' genes to known operons and regulons, and computational developments.


Assuntos
Bases de Dados Genéticas , Escherichia coli K12/genética , Regulação Bacteriana da Expressão Gênica , Regulon , Análise por Conglomerados , Escherichia coli K12/metabolismo , Redes Reguladoras de Genes , Óperon , Matrizes de Pontuação de Posição Específica , Pequeno RNA não Traduzido/metabolismo , Fatores de Transcrição/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA