Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Front Physiol ; 14: 1303815, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111898

RESUMO

Introduction: During their lifespan in the bloodstream, red blood cells (RBCs) are exposed to multiple stressors, including increased oxidative stress, which can affect their morphology and function, thereby contributing to disease. Aim: This investigation aimed to explore the cellular and molecular mechanisms related to oxidative stress underlying anion exchanger 1 activity (band 3, SLC4A1/AE1) in human RBCs. To achieve this aim, the relationship between RBC morphology and functional and metabolic activity has been explored. Moreover, the potential protective effect of an anthocyanin-enriched fraction extracted from Callistemon citrinus flowers was studied. Methods: Cellular morphology, parameters of oxidative stress, as well as the anion exchange capability of band 3 have been analyzed in RBCs treated for 1 h with 50 mM of the pro-oxidant 2,2'-azobis (2-methylpropionamide)-dihydrochloride (AAPH). Before or after the oxidative insult, subsets of cells were exposed to 0.01 µg/mL of an anthocyanin-enriched fraction for 1 h. Results: Exposure to AAPH caused oxidative stress, exhaustion of reduced glutathione, and over-activation of the endogenous antioxidant machinery, resulting in morphological alterations of RBCs, specifically the formation of acanthocytes, increased lipid peroxidation and oxidation of proteins, as well as abnormal distribution and hyper-phosphorylation of band 3. Expected, oxidative stress was also associated with a decreased band 3 ion transport activity and an increase of oxidized haemoglobin, which led to abnormal clustering of band 3. Exposure of cells to the anthocyanin-enriched fraction prior to, but not after, oxidative stress efficiently counteracted oxidative stress-related alterations. Importantly, protection of band3 function from oxidative stress could only be achieved in intact cells and not in RBC ghosts. Conclusion: These findings contribute a) to clarify oxidative stress-related physiological and biochemical alterations in human RBCs, b) propose anthocyanins as natural antioxidants to neutralize oxidative stress-related modifications, and 3) suggest that cell integrity, and therefore a cytosolic component, is required to reverse oxidative stress-related pathophysiological derangements in human mature RBCs.

2.
Front Physiol ; 14: 1225552, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457030

RESUMO

Introduction: Aging is a process characterised by a decline in physiological functions. Reactive species play a crucial role in the aging rate. Due to the close relationship between aging and oxidative stress, functional foods rich in phytochemicals are excellent candidates to neutralise age-related changes. Aim: This investigation aims to verify the potential protective role of bergamot (Citrus bergamia, Femminello cultivar) peel and juice extract in a model of aging represented by human red blood cells (RBCs) exposed to D-Galactose (DGal). Methods: Bergamot peel and juice extracts were subjected to RP-HPLC/PDA/MS for determination of their composition in bioactive compounds. Markers of oxidative stress, including ROS production, thiobarbituric acid reactive substances (TBARS) levels -a marker of lipid peroxidation, oxidation of total protein sulfhydryl groups, as well as the expression and anion exchange capability of band 3 and glycated haemoglobin (A1c) production have been investigated in RBCs treated with D-Gal for 24 h, with or without pre-incubation for 15 min with 5 µg/mL peel or juice extract. In addition, the activity of the endogenous antioxidant system, including catalase (CAT) and superoxide dismutase (SOD), as well as the diversion of the RBC metabolism from glycolysis towards the pentose phosphate pathway shunt, as denoted by activation of glucose-6-phosphate dehydrogenase (G6PDH), have been explored. Results: Data shown here suggest that bergamot peel and juice extract i) prevented the D-Gal-induced ROS production, and consequently, oxidative stress injury to biological macromolecules including membrane lipids and proteins; ii) significantly restored D-Gal-induced alterations in the distribution and ion transport kinetics of band 3; iii) blunted A1c production; iv) effectively impeded the over-activation of the endogenous antioxidant enzymes CAT and SOD; and v) significantly prevented the activation of G6PDH. Discussion: These results further contribute to shed light on aging mechanisms in human RBCs and identify bergamot as a functional food rich in natural antioxidants useful for prevention and treatment of oxidative stress-related changes, which may lead to pathological states during aging.

3.
Antioxidants (Basel) ; 12(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37107223

RESUMO

Red blood cell (RBC) deformability is the ability of cells to modulate their shape to ensure transit through narrow capillaries of the microcirculation. A loss of deformability can occur in several pathological conditions, during natural RBC aging through an increase in membrane protein phosphorylation, and/or through the structural rearrangements of cytoskeletal proteins due to oxidative conditions, with a key role played by band 3. Due to the close relationship between aging and oxidative stress, flavonoid-rich foods are good candidates to counteract age-related alterations. This study aims to verify the beneficial role of Açaì extract in a d-Galactose (d-Gal)-induced model of aging in human RBCs. To this end, band 3 phosphorylation and structural rearrangements in membrane cytoskeleton-associated proteins, namely spectrin, ankyrin, and/or protein 4.1, are analyzed in RBCs treated with 100 mM d-Gal for 24 h, with or without pre-incubation with 10 µg/mL Açaì extract for 1 h. Furthermore, RBC deformability is also measured. Tyrosine phosphorylation of band 3, membrane cytoskeleton-associated proteins, and RBC deformability (elongation index) are analyzed using western blotting analysis, FACScan flow cytometry, and ektacytometry, respectively. The present data show that: (i) Açaì berry extract restores the increase in band 3 tyrosine phosphorylation and Syk kinase levels after exposure to 100 mM d-Gal treatment; and (ii) Açaì berry extract partially restores alterations in the distribution of spectrin, ankyrin, and protein 4.1. Interestingly, the significant decrease in membrane RBC deformability associated with d-Gal treatment is alleviated by pre-treatment with Açaì extract. These findings further contribute to clarify mechanisms of natural aging in human RBCs, and propose flavonoid substances as potential natural antioxidants for the treatment and/or prevention of oxidative-stress-related disease risk.

4.
Ital J Pediatr ; 49(1): 50, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101237

RESUMO

BACKGROUND: Social distancing and quarantine imposed by the authority during the COVID-19 pandemic caused restrictions, which had a negative impact on eating behavior, especially among adolescents. We proposed a retrospective study aimed to evaluate the effect of the COVID-19 pandemic on eating disorders risk and symptoms. METHODS: In this study, a group of 127 pediatric patients (117 females and 10 males) with eating disorders admitted to the Bambino Gesù Children's Hospital of Rome (Italy), in the period between August 2019 and April 2021, was analyzed. All patient data were collected from patients' electronic medical records. RESULTS: We found that 80.3% of patients were at the onset of eating disorders and that 26% of patients had familiarity for psychotic disorders. Often these patients had comorbidities and alterations in blood parameters such as leukocytopenia, neutropenia, hypovitaminosis and hormonal problems that could affect their future. CONCLUSIONS: Our findings could provide a framework for developing clinical and educational interventions to mitigate the short- and long-term negative impact of the pandemic on adolescent future health.


Assuntos
COVID-19 , Transtornos da Alimentação e da Ingestão de Alimentos , Adolescente , Feminino , Masculino , Humanos , Criança , COVID-19/epidemiologia , Estudos Retrospectivos , Pandemias , Transtornos da Alimentação e da Ingestão de Alimentos/epidemiologia , Saúde do Adolescente
5.
J Cell Mol Med ; 27(10): 1315-1326, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37078409

RESUMO

The bacterial product CNF1, through its action on the Rho GTPases, is emerging as a modulator of crucial signalling pathways involved in selected neurological diseases characterized by mitochondrial dysfunctions. Mitochondrial impairment has been hypothesized to have a key role in paramount mechanisms underlying Rett syndrome (RTT), a severe neurologic rare disorder. CNF1 has been already reported to have beneficial effects in mouse models of RTT. Using human RTT fibroblasts from four patients carrying different mutations, as a reliable disease-in-a-dish model, we explored the cellular and molecular mechanisms, which can underlie the CNF1-induced amelioration of RTT deficits. We found that CNF1 treatment modulates the Rho GTPases activity of RTT fibroblasts and induces a considerable re-organization of the actin cytoskeleton, mainly in stress fibres. Mitochondria of RTT fibroblasts show a hyperfused morphology and CNF1 decreases the mitochondrial mass leaving substantially unaltered the mitochondrial dynamic. From a functional perspective, CNF1 induces mitochondrial membrane potential depolarization and activation of AKT in RTT fibroblasts. Given that mitochondrial quality control is altered in RTT, our results are suggestive of a reactivation of the damaged mitochondria removal via mitophagy restoration. These effects can be at the basis of the beneficial effects of CNF1 in RTT.


Assuntos
Proteínas de Escherichia coli , Síndrome de Rett , Camundongos , Animais , Humanos , Síndrome de Rett/tratamento farmacológico , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Projetos Piloto , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/farmacologia , Mitocôndrias/metabolismo , Fibroblastos/metabolismo
6.
Eur J Pharmacol ; 948: 175700, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37001579

RESUMO

Downregulation of cell surface ß-adrenergic receptors (ß-AR) is an important adaptive response that prevents deleterious effects of receptor overstimulation. Various factors including reactive oxygen species cause ß-AR downregulation. In this study, we evaluated the effects of ligands of the peripheral benzodiazepine receptor (PBR), a key protein in regulating oxidative stress, on surface density of endogenous ß1-and ß2-ARs in highly differentiated cells such as human monocytes, which express both ß-AR subtypes. ß-AR expression in human monocytes was evaluated by flow cytometry, qPCR and western blotting. Monocyte treatment with ß-AR agonist isoproterenol did not change surface ß1-AR density while downregulating surface ß2-AR density. This effect was antagonized by the ß-blocker propranolol. An opposite response was observed with benzodiazepine diazepam that led to a time-dependent reduction in ß1-AR density. In particular, while no significant downregulation was observed after 3 h of treatment, only 63% of ß1-ARs were still present on the cell surface after 48 h of treatment with diazepam at 1 µM. Treatment with the PBR antagonist PK11195, but not with propranolol, antagonized the effects of diazepam. No change in ß1-AR-mRNA or protein levels was observed at any time after diazepam treatment. We also found that diazepam did not affect Gs-protein or ß-arrestin-2 recruitment for both ß-ARs in engineered fibroblasts, further suggesting that diazepam activity on ß1-AR density is mediated by PBR. Finally, no sex-related differences were found. Collectively, these results indicate that monocyte ß1-ARs are resistant to catecholamine-mediated downregulation and suggest that PBR plays an important role in regulating ß1-AR density.


Assuntos
Monócitos , Propranolol , Humanos , Monócitos/metabolismo , Propranolol/farmacologia , Benzodiazepinas , Diazepam/farmacologia , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 1/metabolismo
7.
Front Physiol ; 13: 1061319, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36545284

RESUMO

Red blood cells (RBCs) are recognized to be important pathogenetic determinants in several human cardiovascular diseases (CVD). Undergoing to functional alterations when submitted to risk factors, RBCs modify their own intracellular signaling and the redox balance, shift their status from antioxidant defense to pro-oxidant agents, become a potent atherogenic stimulus playing a key role in the dysregulation of the vascular homeostasis favoring the developing and progression of CVD. Rheumatoid arthritis (RA) is a chronic autoimmune disease associated with a significantly increased risk of cardiovascular mortality with a prevalence from two to five more likely in woman, mainly attributed to accelerated atherosclerosis. The purpose of this study was to correlate the RA disease activity and the RBCs functional characteristics. Thirty-two women (aged more than 18 years) with RA, and 25 age-matched healthy women were included in this study. The disease activity, measured as the number of swollen and painful joints (DAS-28), was correlated with 1) the expression of RBCs estrogen receptors, which modulate the RBC intracellular signaling, 2) the activation of the estrogen-linked kinase ERK½, which is a key regulator of RBC adhesion and survival, and 3) the levels of inflammatory- and oxidative stress-related biomarkers, such as the acute-phase reactants, the antioxidant capacity of plasma, the reactive oxidizing species formation and 3-nitrotyrosine. All the biomarkers were evaluated in RA patients at baseline and 6 months after treatment with disease-modifying anti-rheumatic drugs (DMARDs). We found, for the first times, that in RA patients 1) the DAS-28 correlated with RBC ER-α expression, and did not correlate with total antioxidant capacity of plasma; 2) the RBC ER-α expression correlated with systemic inflammatory biomarkers and oxidative stress parameters, as well as ERK½ phosphorylation; and 3) the DMARDs treatments improved the clinical condition measured by DAS-28 score decrease, although the RBCs appeared to be more prone to pro-oxidant status associated to the expression of survival molecules. These findings represent an important advance in the study of RA determinants favoring the developing of CVD, because strongly suggest that RBCs could also participate in the vascular homeostasis through fine modulation of an intracellular signal linked to the ER-α.

8.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232293

RESUMO

During their lifespan, red blood cells (RBCs) are exposed to a large number of stressors and are therefore considered as a suitable model to investigate cell response to oxidative stress (OS). This study was conducted to evaluate the potential beneficial effects of the natural antioxidant quercetin (Q) on an OS model represented by human RBCs treated with H2O2. Markers of OS, including % hemolysis, reactive oxygen species (ROS) production, thiobarbituric acid reactive substances (TBARS) levels, oxidation of protein sulfhydryl groups, CD47 and B3p expression, methemoglobin formation (% MetHb), as well as the anion exchange capability through Band 3 protein (B3p) have been analyzed in RBCs treated for 1 h with 20 mM H2O2 with or without pre-treatment for 1 h with 10 µM Q, or in RBCs pre-treated with 20 mM H2O2 and then exposed to 10 µM Q. The results show that pre-treatment with Q is more effective than post-treatment to counteract OS in RBCs. In particular, pre-exposure to Q avoided morphological alterations (formation of acanthocytes), prevented H2O2-induced OS damage, and restored the abnormal distribution of B3p and CD47 expression. Moreover, H2O2 exposure was associated with a decreased rate constant of SO42- uptake via B3p, as well as an increased MetHb formation. Both alterations have been attenuated by pre-treatment with 10 µM Q. These results contribute (1) to elucidate OS-related events in human RBCs, (2) propose Q as natural antioxidant to counteract OS-related alterations, and (3) identify B3p as a possible target for the treatment and prevention of OS-related disease conditions or aging-related complications impacting on RBCs physiology.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito , Antioxidantes , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Proteína 1 de Troca de Ânion do Eritrócito/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antígeno CD47/metabolismo , Eritrócitos/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Metemoglobina/metabolismo , Estresse Oxidativo , Quercetina/metabolismo , Quercetina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
9.
Cells ; 11(15)2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35954235

RESUMO

Aging is a process characterised by a general decline in physiological functions. The high bioavailability of reactive oxygen species (ROS) plays an important role in the aging rate. Due to the close relationship between aging and oxidative stress (OS), functional foods rich in flavonoids are excellent candidates to counteract age-related changes. This study aimed to verify the protective role of Açaì extract in a d-Galactose (d-Gal)-induced model of aging in human erythrocytes. Markers of OS, including ROS production, thiobarbituric acid reactive substances (TBARS) levels, oxidation of protein sulfhydryl groups, as well as the anion exchange capability through Band 3 protein (B3p) and glycated haemoglobin (A1c) have been analysed in erythrocytes treated with d-Gal for 24 h, with or without pre-incubation for 1 h with 0.5-10 µg/mL Açaì extract. Our results show that the extract avoided the formation of acanthocytes and leptocytes observed after exposure to 50 and 100 mM d-Gal, respectively, prevented d-Gal-induced OS damage, and restored alterations in the distribution of B3p and CD47 proteins. Interestingly, d-Gal exposure was associated with an acceleration of the rate constant of SO42- uptake through B3p, as well as A1c formation. Both alterations have been attenuated by pre-treatment with the Açaì extract. These findings contribute to clarify the aging mechanisms in human erythrocytes and propose functional foods rich in flavonoids as natural antioxidants for the treatment and prevention of OS-related disease conditions.


Assuntos
Euterpe , Eritrócitos/metabolismo , Euterpe/metabolismo , Flavonoides/farmacologia , Hemoglobinas Glicadas/metabolismo , Humanos , Estresse Oxidativo , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo
10.
Int J Mol Sci ; 22(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34445662

RESUMO

Acute myocardial infarction (MI) is associated with an intense inflammatory response that is critical for cardiac repair but is also involved in the pathogenesis of adverse cardiac remodeling, i.e., the set of size, geometry, and structure changes that represent the structural substrate for the development of post-MI heart failure. Deciphering the pathophysiological mechanisms underlying cardiac repair after MI is, therefore, critical to favorably regulate cardiac wound repair and to prevent development of heart failure. Catecholamines and estrogen play an active role in regulating the inflammatory response in the infarcted area. For example, stress-induced catecholamines alter recruitment and trafficking of leukocytes to the heart. Additionally, estrogen affects rate of cardiac rupture during the acute phase of MI, as well as infarct size and survival in animal models of MI. In this review, we will summarize the role of ß-adrenergic receptors and estrogen in cardiac repair after infarction in preclinical studies.


Assuntos
Estrogênios/metabolismo , Insuficiência Cardíaca/prevenção & controle , Infarto do Miocárdio/complicações , Receptores Adrenérgicos beta/metabolismo , Remodelação Ventricular , Animais , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos
11.
Ital J Pediatr ; 47(1): 90, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33858472

RESUMO

BACKGROUND: Since December 2019 coronavirus disease (COVID-19) emerged in Wuhan and spread rapidly worldwide. Despite the high number of people affected, data on clinical features and prognostic factors in children and adolescents are limited. We propose a retrospective study aimed to evaluate clinical characteristics of children infected with SARS-CoV-2 in Italy. METHODS: A pediatric population admitted with COVID-19 to Bambino Gesù Children's Hospital of Rome (Italy) in the period from the end of February to July 2020 has been studied. Medical history, comorbidities, symptoms and laboratory findings were obtained from patients' electronic medical records. RESULTS: In 66 patients (35 males and 31 females) we found that: i) fever and cough were the dominant symptoms, while vomit and convulsions were rare symptoms; and ii) all ages of childhood were susceptible to COVID-19. Furthermore, we found that, compared to females, males with COVID-19, although not significantly, had higher values of inflammatory markers such as C-reactive protein (CRP) and ESR. Conversely, we found that COVID-19 positive females were older than males and required more days of hospitalization. Both males and females COVID-19 positives had procalcitonin values within the normal range and D-Dimer values slightly higher than the normal range. With regard to this latter marker, the value measured in females, although not significant, was higher than that measured in males. Interestingly, the presence of leukopenia was found in both sexes. CONCLUSIONS: Compared to the adults we found that COVID-19 infection in children is a non-severe inflammatory disease in both males and females. In any case, many detailed studies should be conducted.


Assuntos
COVID-19/epidemiologia , Pneumonia Viral/epidemiologia , Índice de Gravidade de Doença , Adolescente , Criança , Pré-Escolar , Comorbidade , Feminino , Humanos , Lactente , Itália/epidemiologia , Masculino , Pandemias , Pneumonia Viral/virologia , Prognóstico , Estudos Retrospectivos , SARS-CoV-2
12.
Antioxidants (Basel) ; 10(2)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669171

RESUMO

Sickle cell disease (SCD) is the most common hereditary disorder of hemoglobin (Hb), which affects approximately a million people worldwide. It is characterized by a single nucleotide substitution in the ß-globin gene, leading to the production of abnormal sickle hemoglobin (HbS) with multi-system consequences. HbS polymerization is the primary event in SCD. Repeated polymerization and depolymerization of Hb causes oxidative stress that plays a key role in the pathophysiology of hemolysis, vessel occlusion and the following organ damage in sickle cell patients. For this reason, reactive oxidizing species and the (end)-products of their oxidative reactions have been proposed as markers of both tissue pro-oxidant status and disease severity. Although more studies are needed to clarify their role, antioxidant agents have been shown to be effective in reducing pathological consequences of the disease by preventing oxidative damage in SCD, i.e., by decreasing the oxidant formation or repairing the induced damage. An improved understanding of oxidative stress will lead to targeted antioxidant therapies that should prevent or delay the development of organ complications in this patient population.

13.
Autophagy ; 17(9): 2528-2548, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33034545

RESUMO

Mitochondria-associated membranes (MAMs) are essential communication subdomains of the endoplasmic reticulum (ER) that interact with mitochondria. We previously demonstrated that, upon macroautophagy/autophagy induction, AMBRA1 is recruited to the BECN1 complex and relocalizes to MAMs, where it regulates autophagy by interacting with raft-like components. ERLIN1 is an endoplasmic reticulum lipid raft protein of the prohibitin family. However, little is known about its association with the MAM interface and its involvement in autophagic initiation. In this study, we investigated ERLIN1 association with MAM raft-like microdomains and its interaction with AMBRA1 in the regulation of the autophagic process. We show that ERLIN1 interacts with AMBRA1 at MAM raft-like microdomains, which represents an essential condition for autophagosome formation upon nutrient starvation, as demonstrated by knocking down ERLIN1 gene expression. Moreover, this interaction depends on the "integrity" of key molecules, such as ganglioside GD3 and MFN2. Indeed, knocking down ST8SIA1/GD3-synthase or MFN2 expression impairs AMBRA1-ERLIN1 interaction at the MAM level and hinders autophagy. In conclusion, AMBRA1-ERLIN1 interaction within MAM raft-like microdomains appears to be pivotal in promoting the formation of autophagosomes.Abbreviations: ACSL4/ACS4: acyl-CoA synthetase long chain family member 4; ACTB/ß-actin: actin beta; AMBRA1: autophagy and beclin 1 regulator 1; ATG14: autophagy related 14; BECN1: beclin 1; CANX: calnexin; Cy5: cyanine 5; ECL: enhanced chemiluminescence; ER: endoplasmic reticulum; ERLIN1/KE04: ER lipid raft associated 1; FB1: fumonisin B1; FE: FRET efficiency; FRET: Förster/fluorescence resonance energy transfer; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GD3: aNeu5Ac(2-8)aNeu5Ac(2-3)bDGalp(1-4)bDGlcp(1-1)ceramide; HBSS: Hanks' balanced salt solution; HRP: horseradish peroxidase; LMNB1: lamin B1; mAb: monoclonal antibody; MAMs: mitochondria-associated membranes; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; MYC/cMyc: proto-oncogene, bHLH transcription factor; P4HB: prolyl 4-hydroxylase subunit beta; pAb: polyclonal antibody; PE: phycoerythrin; SCAP/SREBP: SREBF chaperone; SD: standard deviation; ST8SIA1: ST8 alpha-N-acetyl-neuraminide alpha-2,8 sialyltransferase 1; SQSTM1/p62: sequestosome 1; TOMM20: translocase of outer mitochondrial membrane 20; TUBB/beta-tubulin: tubulin beta class I; ULK1: unc-51 like autophagy activating kinase 1; VDAC1/porin: voltage dependent anion channel 1.


Assuntos
Autofagossomos , Autofagia , Autofagossomos/metabolismo , Autofagia/genética , Lipídeos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo
14.
Ital J Pediatr ; 46(1): 29, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32143677

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) is the most common cause of bronchiolitis in the pediatric population worldwide and an important cause of death in developing countries. It has been demonstrated that the balance between oxidant and antioxidant systems is disrupted in children with bronchiolitis and that oxidative stress contributes to the pathogenesis of this disease. Platelets play an important role in antimicrobial host defenses and contribute to pulmonary vascular repair being either targets or source of reactive oxidizing species. The main purpose of this study was to assessing sex differences in clinical characteristics and platelets activation during RSV bronchiolitis in infancy. METHODS: In this retrospective study a total of 203 patients (112 boys and 91 girls) with bronchiolitis, aged 12 months or less, admitted to the Bambino Gesù Pediatric Hospital of Rome (Italy) in the period from January to December 2017, were enrolled. Moreover, in a select group of patients (15 boys and 12 girls) with diagnosis of moderate bronchiolitis from RSV, a pilot study on oxidative stress and platelet characteristics was carried out by electron paramagnetic resonance and flow cytometry respectively. Age-matched healthy control subjects (10 boys and 10 girls) were chosen as controls. Data were analyzed using Student' T test, Chi Squared test and one-way ANOVA test. RESULTS: This study highlights the influence of sex in the clinical course of bronchiolitis. In particular we found: i) a higher incidence of bronchiolitis in boys than in girls (55% vs 45%); ii) higher C reactive protein values in girls than boys (1.11 mg/dL vs 0.92 mg/dL respectively; p < 0.05); iii) a different degree of thrombocytosis during hospitalization (mild in the girls and severe in the boys). Moreover, in selected patients we found that compared to girls with bronchiolitis, boys showed: i) higher percentage of activated platelets (8% vs 2% respectively; p < 0.05) and iii) higher number of platelets forming homotypic aggregates (2.36% vs 0.84% respectively, p < 0.05). CONCLUSION: The present study affirm that the bronchiolitis is an infection in which sex seems to act as a modulating factor only in the clinical course, influencing also the choice of the therapy should be made.


Assuntos
Bronquiolite Viral/sangue , Bronquiolite Viral/fisiopatologia , Estresse Oxidativo/fisiologia , Ativação Plaquetária/fisiologia , Espécies Reativas de Oxigênio/sangue , Infecções por Vírus Respiratório Sincicial/sangue , Infecções por Vírus Respiratório Sincicial/fisiopatologia , Feminino , Humanos , Lactente , Recém-Nascido , Itália , Masculino , Projetos Piloto , Estudos Retrospectivos , Fatores Sexuais
15.
Exp Gerontol ; 129: 110755, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676426

RESUMO

Aim of this study was to characterize the effects of oral trehalose administration (2%w/v) on healthspan in old mice. Trehalose was administered in drinking water for 1 month to male and female C57BL/6N mice aged 25-months. After behavioral phenotyping (grip strength, beam walking and rotarod tests), autophagy (LC3-II/actin) and oxidative stress were tested in the cerebral cortex and gastrocnemius muscle. The latter parameter was indirectly assessed by evaluating carbonyl groups added to proteins as a result of oxidative reactions, in addition to central levels of NRF2 protein, a transcription factor that regulates the expression of antioxidant enzymes. In comparison with sex-matched controls, trehalose-treated males performed better in motor planning and coordination tasks. This behavioral phenotype was associated with an activation of the ubiquitin-proteasome system, autophagy and antioxidant defences in cerebral cortex. Independently from trehalose administration, females were characterized by better motor performance and showed higher levels of ubiquitinated proteins and NRF2 in cerebral cortex, suggesting an up-regulation of basal antioxidant defences. In conclusion, trehalose was effective in counteracting some aspects of age-related decay, with specific effects in male and female subjects.


Assuntos
Antioxidantes/farmacologia , Destreza Motora/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Trealose/farmacologia , Animais , Autofagia , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Projetos Piloto , Caracteres Sexuais , Proteínas Ubiquitinadas
16.
Cell Physiol Biochem ; 53(1): 186-199, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31278696

RESUMO

BACKGROUND/AIMS: Estrogen could play a key role in the mechanisms underlying sex-related disparity in the incidence of thrombotic events. We investigated whether estrogen receptors (ERs) were expressed in human red blood cells (RBCs), and if they affected cell signaling of erythrocyte constitutive isoform of endothelial NO-synthase (eNOS) and nitric oxide (NO) release. METHODS: RBCs from 29 non-smoker volunteers (15 males and 14 females) aged between 20 and 40 years were analyzed by cytometry and western blot. In particular, content and distribution of ER-α and ER-ß, tyrosine kinases and eNOS phosphorylation and NO release were analyzed. RESULTS: We demonstrated that: i) both ER-α and ER-ß were expressed by RBCs; ii) they were both functionally active; and iii) ERs distribution and function were different in males and females. In particular, ERs modulated eNOS phosphorylation and NO release in RBCs from both sexes, but they induced the phosphorylation of specific tyrosine residues of kinases linked to eNOS activation and NO release in the RBCs from females only. CONCLUSION: Collectively, these data suggest that ERs could play a critical role in RBC intracellular signaling. The possible implication of this signaling in sex-linked risk disparity in human cardiovascular diseases, e.g. in thrombotic events, may not be ruled out.


Assuntos
Receptores de Estrogênio/metabolismo , Transdução de Sinais , Adulto , Dronabinol/farmacologia , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação/efeitos dos fármacos , Piperidinas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Adulto Jovem
17.
Oxid Med Cell Longev ; 2019: 8267234, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191805

RESUMO

Metabolic syndrome (MS) represents worldwide public health issue characterized by a set of cardiovascular risk factors including obesity, diabetes, dyslipidemia, hypertension, and impaired glucose tolerance. The link between the MS and the associated diseases is represented by oxidative stress (OS) and by the intracellular redox imbalance, both caused by the persistence of chronic inflammatory conditions that characterize MS. The increase in oxidizing species formation in MS has been accepted as a major underlying mechanism for mitochondrial dysfunction, accumulation of protein and lipid oxidation products, and impairment of the antioxidant systems. These oxidative modifications are recognized as relevant OS biomarkers potentially able to (i) clarify the role of reactive oxygen and nitrogen species in the etiology of the MS, (ii) contribute to the diagnosis/evaluation of the disease's severity, and (iii) evaluate the utility of possible therapeutic strategies based on natural antioxidants. The antioxidant therapies indeed could be able to (i) counteract systemic as well as mitochondrial-derived OS, (ii) enhance the endogenous antioxidant defenses, (iii) alleviate MS symptoms, and (iv) prevent the complications linked to MS-derived cardiovascular diseases. The focus of this review is to summarize the current knowledge about the role of OS in the development of metabolic alterations characterizing MS, with particular regard to the occurrence of OS-correlated biomarkers, as well as to the use of therapeutic strategies based on natural antioxidants.


Assuntos
Síndrome Metabólica/metabolismo , Estresse Oxidativo/fisiologia , Animais , Humanos , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
18.
J Cell Physiol ; 234(11): 20453-20468, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30982981

RESUMO

Cardiac dysfunction is often observed in patients with cancer also representing a serious problem limiting chemotherapeutic intervention and even patient survival. In view of the recently established role of the immune system in the control of cancer growth, the present work has been undertaken to investigate the effects of a panel of the most important inflammatory cytokines on the integrity and function of mitochondria, as well as of the cytoskeleton, two key elements in the functioning of cardiomyocytes. Either mitochondria features or actomyosin cytoskeleton organization of in vitro-cultured cardiomyocytes treated with different inflammatory cytokines were analyzed. In addition, to investigate the interplay between tumor growth and cardiac function in an in vivo system, immunocompetent female mice were inoculated with cancer cells and treated with the chemotherapeutic drug doxorubicin at a dosing schedule able to suppress tumor growth without inducing cardiac alterations. Analyses carried out in cardiomyocytes treated with the inflammatory cytokines, such as tumor necrosis factor α (TNF-α), interferon γ (IFN-γ), interleukin 6 (IL-6), IL-8, and IL-1ß revealed severe phenotypic changes, for example, of contractile cytoskeletal elements, mitochondrial membrane potential, mitochondrial reactive oxygen species production and mitochondria network organization. Accordingly, in immunocompetent mice, the tumor growth was accompanied by increased levels of the inflammatory cytokines TNF-α, IFN-γ, IL-6, and IL-8, either in serum or in the heart tissue, together with a significant reduction of ventricular systolic function. The alterations of mitochondria and of microfilament system of cardiomyocytes, due to the systemic inflammation associated with cancer growth, could be responsible for remote cardiac injury and impairment of systolic function observed in vivo.


Assuntos
Citocinas/farmacologia , Citoesqueleto/efeitos dos fármacos , Inflamação/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Animais , Células Cultivadas , Feminino , Interferon gama/farmacologia , Interleucina-6/farmacologia , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
19.
FEBS Open Bio ; 8(12): 1888-1896, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30524940

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory disease with increased risk of cardiovascular events and mortality that can be attributed to accelerated atherosclerosis. This pilot study aimed to investigate if changes in blood parameters were compatible with atherosclerotic events in RA patients. To this aim, 45 RA women (aged more than 18 years), and 25 age and gender-matched healthy donors (HD) were included. Biomarkers of oxidative stress, platelet activation and platelet aggregation were analysed in RA patients at baseline and after six months of treatment with disease modifying anti-rheumatic drugs (DMARDs). Flow cytometry analysis revealed that ca. 4% of platelets was in activated state (evaluated in term of Annexin V and PAC-1 positivity) in RA patients at baseline, and that the 76% of platelets displayed mitochondrial hyperpolarization. Moreover, platelets from RA patients at baseline aggregated more than those from HD after whole blood treatment with adenosine diphosphate. Interestingly, platelet aggregation in patients at baseline positively correlated with disease activity measured by DAS28 score. After six months of treatment with DMARDs, platelet activation and platelet aggregation reached values comparable to those of HD. Our preliminary data suggest that platelets might play an active role in the atherosclerosis occurring in RA patients.

20.
Oncotarget ; 9(27): 18869-18884, 2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29721168

RESUMO

The regulation of the mitochondrial dynamics and the balance between fusion and fission processes are crucial for the health and fate of the cell. Mitochondrial fusion and fission machinery is controlled by key proteins such as mitofusins, OPA-1 and several further molecules. In the present work we investigated the implication of lipid rafts in mitochondrial fusion induced by Mdivi-1. Our results underscore the possible implication of lipid "rafts" in mitochondrial morphogenetic changes and their homeostasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA