Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658801

RESUMO

Platinum (PT)-resistant Epithelial Ovarian Cancer (EOC) grows as a metastatic disease, disseminating in the abdomen and pelvis. Very few options are available for PT-resistant EOC patients, and little is known about how the acquisition of PT-resistance mediates the increased spreading capabilities of EOC. Here, using isogenic PT-resistant cells, genetic and pharmacological approaches, and patient-derived models, we report that Integrin α6 (ITGA6) is overexpressed by PT-resistant cells and is necessary to sustain EOC metastatic ability and adhesion-dependent PT-resistance. Using in vitro approaches, we showed that PT induces a positive loop that, by stimulating ITGA6 transcription and secretion, contributes to the formation of a pre-metastatic niche enabling EOC cells to disseminate. At molecular level, ITGA6 engagement regulates the production and availability of insulin-like growth factors (IGFs), over-stimulating the IGF1R pathway and upregulating Snail expression. In vitro data were recapitulated using in vivo models in which the targeting of ITGA6 prevents PT-resistant EOC dissemination and improves PT-activity, supporting ITGA6 as a promising druggable target for EOC patients.

2.
Biochimie ; 214(Pt A): 141-155, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37619810

RESUMO

R-loops are atypical, three-stranded nucleic acid structures that contain a stretch of RNA:DNA hybrids and an unpaired, single stranded DNA loop. R-loops are physiological relevant and can act as regulators of gene expression, chromatin structure, DNA damage repair and DNA replication. However, unscheduled and persistent R-loops are mutagenic and can mediate replication-transcription conflicts, leading to DNA damage and genome instability if left unchecked. Detailed transcriptome analysis unveiled that 85% of the human genome, including repetitive regions, hold transcriptional activity. This anticipates that R-loops management plays a central role for the regulation and integrity of genomes. This function is expected to have a particular relevance for repetitive sequences that make up to 75% of the human genome. Here, we review the impact of R-loops on the function and stability of repetitive regions such as centromeres, telomeres, rDNA arrays, transposable elements and triplet repeat expansions and discuss their relevance for associated pathological conditions.


Assuntos
DNA , Estruturas R-Loop , Humanos , DNA/química , Sequências Repetitivas de Ácido Nucleico , RNA/química , DNA de Cadeia Simples , Replicação do DNA , Instabilidade Genômica
3.
Oncogene ; 39(22): 4390-4403, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32332923

RESUMO

In epithelial ovarian cancer (EOC), response to platinum (PT)-based chemotherapy dictates subsequent treatments and predicts patients' prognosis. Alternative splicing is often deregulated in human cancers and can be altered by chemotherapy. Whether and how changes in alternative splicing regulation could impact on the response of EOC to PT-based chemotherapy is still not clarified. We identified the splicing factor proline and glutamine rich (SFPQ) as a critical mediator of response to PT in an unbiased functional genomic screening in EOC cells and, using a large cohort of primary and recurrent EOC samples, we observed that it is frequently overexpressed in recurrent PT-treated samples and that its overexpression correlates with PT resistance. At mechanistic level, we show that, under PT treatment, SFPQ, in complex with p54nrb, binds and regulates the activity of the splicing factor SRSF2. SFPQ/p54nrb complex decreases SRSF2 binding to caspase-9 RNA, favoring the expression of its alternative spliced antiapoptotic form. As a consequence, SFPQ/p54nrb protects cells from PT-induced death, eventually contributing to chemoresistance. Overall, our work unveils a previously unreported SFPQ/p54nrb/SRSF2 pathway that in EOC cells plays a central role in regulating alternative splicing and PT-induced apoptosis and that could result in the design of new possible ways of intervention to overcome PT resistance.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Cisplatino/farmacologia , Proteínas de Ligação a DNA/fisiologia , Proteínas de Neoplasias/fisiologia , Neoplasias Ovarianas/tratamento farmacológico , Fator de Processamento Associado a PTB/fisiologia , Proteínas de Ligação a RNA/fisiologia , Fatores de Processamento de Serina-Arginina/fisiologia , Animais , Antineoplásicos Alquilantes/uso terapêutico , Apoptose , Caspase 8/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Inibidores de Caspase/farmacologia , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Neoplasias Ovarianas/metabolismo , Splicing de RNA , RNA Mensageiro/metabolismo , RNA Neoplásico/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Recidiva , Spliceossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA