Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(7): 5837-5853, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38533580

RESUMO

The methyl-lysine reader protein SPIN1 plays important roles in various human diseases. However, targeting methyl-lysine reader proteins has been challenging. Very few cellularly active SPIN1 inhibitors have been developed. We previously reported that our G9a/GLP inhibitor UNC0638 weakly inhibited SPIN1. Here, we present our comprehensive structure-activity relationship study that led to the discovery of compound 11, a dual SPIN1 and G9a/GLP inhibitor, and compound 18 (MS8535), a SPIN1 selective inhibitor. We solved the cocrystal structure of SPIN1 in complex with 11, confirming that 11 occupied one of the three Tudor domains. Importantly, 18 displayed high selectivity for SPIN1 over 38 epigenetic targets, including G9a/GLP, and concentration dependently disrupted the interactions of SPIN1 and H3 in cells. Furthermore, 18 was bioavailable in mice. We also developed 19 (MS8535N), which was inactive against SPIN1, as a negative control of 18. Collectively, these compounds are useful chemical tools to study biological functions of SPIN1.


Assuntos
Lisina , Domínio Tudor , Humanos , Animais , Camundongos , Relação Estrutura-Atividade
2.
Nat Methods ; 21(3): 401-405, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38317008

RESUMO

Unique molecular identifiers are random oligonucleotide sequences that remove PCR amplification biases. However, the impact that PCR associated sequencing errors have on the accuracy of generating absolute counts of RNA molecules is underappreciated. We show that PCR errors are a source of inaccuracy in both bulk and single-cell sequencing data, and synthesizing unique molecular identifiers using homotrimeric nucleotide blocks provides an error-correcting solution that allows absolute counting of sequenced molecules.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Nucleotídeos , Análise de Sequência de RNA , Oligonucleotídeos/genética , Reação em Cadeia da Polimerase
3.
Bioorg Med Chem Lett ; 98: 129546, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37944866

RESUMO

Epigenetic proteins containing YEATS domains (YD) are an emerging target class in drug discovery. Described herein are the discovery and characterization efforts associated with PFI-6, a new chemical probe for the YD of MLLT1 (ENL/YEATS1) and MLLT3 (AF9/YEATS3). For hit identification, fragment-like mimetics of endogenous YD ligands (crotonylated histone-containing proteins), were synthesized via parallel medicinal chemistry (PMC) and screened for MLLT1 binding. Subsequent SAR studies led to iterative MLLT1/3 binding and selectivity improvements, culminating in the discovery of PFI-6. PFI-6 demonstrates good affinity and selectivity for MLLT1/3 vs. other human YD proteins (YEATS2/4) and engages MLLT3 in cells. Small-molecule X-ray co-crystal structures of two molecules, including PFI-6, bound to the YD of MLLT1/3 are also described. PFI-6 may be a useful tool molecule to better understand the biological effects associated with modulation of MLLT1/3.


Assuntos
Histonas , Proteínas Nucleares , Humanos , Proteínas Nucleares/metabolismo , Histonas/metabolismo , Domínios Proteicos , Descoberta de Drogas , Proteínas de Neoplasias/metabolismo , Fatores de Transcrição/metabolismo
4.
J Med Chem ; 66(1): 460-472, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36562986

RESUMO

A series of small-molecule YEATS4 binders have been discovered as part of an ongoing research effort to generate high-quality probe molecules for emerging and/or challenging epigenetic targets. Analogues such as 4d and 4e demonstrate excellent potency and selectivity for YEATS4 binding versus YEATS1,2,3 and exhibit good physical properties and in vitro safety profiles. A new X-ray crystal structure confirms direct binding of this chemical series to YEATS4 at the lysine acetylation recognition site of the YEATS domain. Multiple analogues engage YEATS4 with nanomolar potency in a whole-cell nanoluciferase bioluminescent resonance energy transfer assay. Rodent pharmacokinetic studies demonstrate the competency of several analogues as in vivo-capable binders.


Assuntos
Regulação da Expressão Gênica , Processamento de Proteína Pós-Traducional , Domínios Proteicos , Acetilação , Epigênese Genética
5.
SLAS Discov ; 24(2): 133-141, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30359161

RESUMO

Eleven-nineteen leukemia (ENL) contains an epigenetic reader domain (YEATS domain) that recognizes lysine acylation on histone 3 and facilitates transcription initiation and elongation through its interactions with the super elongation complex (SEC) and the histone methyl transferase DOT1L. Although it has been known for its role as a fusion protein in mixed lineage leukemia (MLL), overexpression of native ENL, and thus dysregulation of downstream genes in acute myeloid leukemia (AML), has recently been implicated as a driver of disease that is reliant on the epigenetic reader activity of the YEATS domain. We developed a peptide displacement assay (histone 3 tail with acylated lysine) and screened a small-molecule library totaling more than 24,000 compounds for their propensity to disrupt the YEATS domain-histone peptide binding. Among these, we identified a first-in-class dual inhibitor of ENL ( Kd = 745 ± 45 nM) and its paralog AF9 ( Kd = 523 ± 53 nM) and performed "SAR by catalog" with the aim of starting the development of a chemical probe for ENL.


Assuntos
Descoberta de Drogas , Fatores de Elongação da Transcrição/antagonistas & inibidores , Fatores de Elongação da Transcrição/química , Fenômenos Biofísicos , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Histonas/metabolismo , Humanos , Concentração Inibidora 50 , Peptídeos/metabolismo , Domínios Proteicos , Relação Estrutura-Atividade
6.
Angew Chem Int Ed Engl ; 57(50): 16302-16307, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30288907

RESUMO

YEATS domain (YD) containing proteins are an emerging class of epigenetic targets in drug discovery. Dysregulation of these modified lysine-binding proteins has been linked to the onset and progression of cancers. We herein report the discovery and characterisation of the first small-molecule chemical probe, SGC-iMLLT, for the YD of MLLT1 (ENL/YEATS1) and MLLT3 (AF9/YEATS3). SGC-iMLLT is a potent and selective inhibitor of MLLT1/3-histone interactions. Excellent selectivity over other human YD proteins (YEATS2/4) and bromodomains was observed. Furthermore, our probe displays cellular target engagement of MLLT1 and MLLT3. The first small-molecule X-ray co-crystal structures with the MLLT1 YD are also reported. This first-in-class probe molecule can be used to understand MLLT1/3-associated biology and the therapeutic potential of small-molecule YD inhibitors.


Assuntos
Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/química , Bibliotecas de Moléculas Pequenas/química , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/química , Cristalografia por Raios X , Histonas/metabolismo , Humanos , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Domínios Proteicos , Mapas de Interação de Proteínas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Transcrição/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-28265301

RESUMO

BACKGROUND: Histone lysine demethylases (KDMs) are of interest as drug targets due to their regulatory roles in chromatin organization and their tight associations with diseases including cancer and mental disorders. The first KDM inhibitors for KDM1 have entered clinical trials, and efforts are ongoing to develop potent, selective and cell-active 'probe' molecules for this target class. Robust cellular assays to assess the specific engagement of KDM inhibitors in cells as well as their cellular selectivity are a prerequisite for the development of high-quality inhibitors. Here we describe the use of a high-content cellular immunofluorescence assay as a method for demonstrating target engagement in cells. RESULTS: A panel of assays for the Jumonji C subfamily of KDMs was developed to encompass all major branches of the JmjC phylogenetic tree. These assays compare compound activity against wild-type KDM proteins to a catalytically inactive version of the KDM, in which residues involved in the active-site iron coordination are mutated to inactivate the enzyme activity. These mutants are critical for assessing the specific effect of KDM inhibitors and for revealing indirect effects on histone methylation status. The reported assays make use of ectopically expressed demethylases, and we demonstrate their use to profile several recently identified classes of KDM inhibitors and their structurally matched inactive controls. The generated data correlate well with assay results assessing endogenous KDM inhibition and confirm the selectivity observed in biochemical assays with isolated enzymes. We find that both cellular permeability and competition with 2-oxoglutarate affect the translation of biochemical activity to cellular inhibition. CONCLUSIONS: High-content-based immunofluorescence assays have been established for eight KDM members of the 2-oxoglutarate-dependent oxygenases covering all major branches of the JmjC-KDM phylogenetic tree. The usage of both full-length, wild-type and catalytically inactive mutant ectopically expressed protein, as well as structure-matched inactive control compounds, allowed for detection of nonspecific effects causing changes in histone methylation as a result of compound toxicity. The developed assays offer a histone lysine demethylase family-wide tool for assessing KDM inhibitors for cell activity and on-target efficacy. In addition, the presented data may inform further studies to assess the cell-based activity of histone lysine methylation inhibitors.


Assuntos
Inibidores Enzimáticos/metabolismo , Histona Desmetilases/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Biocatálise , Domínio Catalítico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Células HeLa , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histonas/metabolismo , Humanos , Concentração Inibidora 50 , Metilação/efeitos dos fármacos , Microscopia de Fluorescência , Mutagênese , Paclitaxel/toxicidade , Filogenia , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade Proteica/efeitos dos fármacos
8.
Oncotarget ; 7(28): 43997-44012, 2016 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-27259267

RESUMO

Gastric cancer is one of the most common malignancies and a leading cause of cancer death worldwide. The prognosis of stomach cancer is generally poor as this cancer is not very sensitive to commonly used chemotherapies. Epigenetic modifications play a key role in gastric cancer and contribute to the development and progression of this malignancy. In order to explore new treatment options in this target area we have screened a library of epigenetic inhibitors against gastric cancer cell lines and identified inhibitors for the BET family of bromodomains as potent inhibitors of gastric cancer cell proliferations. Here we show that both the pan-BET inhibitor (+)-JQ1 as well as a newly developed specific isoxazole inhibitor, PNZ5, showed potent inhibition of gastric cancer cell growth. Intriguingly, we found differences in the antiproliferative response between gastric cancer cells tested derived from Brazilian patients as compared to those from Asian patients, the latter being largely resistant to BET inhibition. As BET inhibitors are entering clinical trials these findings provide the first starting point for future therapies targeting gastric cancer.


Assuntos
Azepinas/farmacologia , Proliferação de Células/efeitos dos fármacos , Isoxazóis/farmacologia , Proteínas Nucleares/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Triazóis/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Povo Asiático , Azepinas/química , Brasil , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Isoxazóis/química , Estrutura Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Neoplasias Gástricas/etnologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triazóis/química
9.
Antimicrob Agents Chemother ; 57(12): 5977-86, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24041906

RESUMO

The type II topoisomerases DNA gyrase (GyrA/GyrB) and topoisomerase IV (ParC/ParE) are well-validated targets for antibacterial drug discovery. Because of their structural and functional homology, these enzymes are amenable to dual targeting by a single ligand. In this study, two novel benzothiazole ethyl urea-based small molecules, designated compound A and compound B, were evaluated for their biochemical, antibacterial, and pharmacokinetic properties. The two compounds inhibited the ATPase activity of GyrB and ParE with 50% inhibitory concentrations of <0.1 µg/ml. Prevention of DNA supercoiling by DNA gyrase was also observed. Both compounds potently inhibited the growth of a range of bacterial organisms, including staphylococci, streptococci, enterococci, Clostridium difficile, and selected Gram-negative respiratory pathogens. MIC90s against clinical isolates ranged from 0.015 µg/ml for Streptococcus pneumoniae to 0.25 µg/ml for Staphylococcus aureus. No cross-resistance with common drug resistance phenotypes was observed. In addition, no synergistic or antagonistic interactions between compound A or compound B and other antibiotics, including the topoisomerase inhibitors novobiocin and levofloxacin, were detected in checkerboard experiments. The frequencies of spontaneous resistance for S. aureus were <2.3 × 10(-10) with compound A and <5.8 × 10(-11) with compound B at concentrations equivalent to 8× the MICs. These values indicate a multitargeting mechanism of action. The pharmacokinetic properties of both compounds were profiled in rats. Following intravenous administration, compound B showed approximately 3-fold improvement over compound A in terms of both clearance and the area under the concentration-time curve. The measured oral bioavailability of compound B was 47.7%.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Benzotiazóis/farmacologia , DNA Topoisomerase IV/antagonistas & inibidores , DNA Topoisomerases Tipo II/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Inibidores da Topoisomerase/farmacologia , Ureia/análogos & derivados , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Antibacterianos/química , Antibacterianos/farmacocinética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Benzotiazóis/química , Benzotiazóis/farmacocinética , Sobrevivência Celular/efeitos dos fármacos , DNA Topoisomerase IV/genética , DNA Topoisomerase IV/metabolismo , DNA Topoisomerases Tipo II/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/enzimologia , Bactérias Gram-Positivas/crescimento & desenvolvimento , Células Hep G2 , Humanos , Interleucina-33 , Interleucinas , Levofloxacino/farmacologia , Masculino , Testes de Sensibilidade Microbiana , Novobiocina/farmacologia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Inibidores da Topoisomerase/química , Inibidores da Topoisomerase/farmacocinética , Ureia/química , Ureia/farmacocinética , Ureia/farmacologia
10.
Prostaglandins Other Lipid Mediat ; 75(1-4): 153-67, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15789622

RESUMO

Prostaglandin D2 (PGD2) is a lipid mediator produced by mast cells, macrophages and Th2 lymphocytes and has been detected in high concentrations in the airways of asthmatic patients. There are two receptors for PGD2, namely the D prostanoid (DP) receptor and the chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2). The proinflammatory effects of PGD2 leading to recruitment of eosinophils and Th2 lymphocytes into inflamed tissues is thought to be predominantly due to action on CRTH2. Several PGD2 metabolites have been described as potent and selective agonists for CRTH2. In this study we have characterized the activity of delta12-PGD2, a product of PGD2 isomerization by albumin. Delta12-PGD2 induced calcium mobilization in CHO cells expressing human CRTH2 receptor, with efficacy and potency similar to those of PGD2. These effects were blocked by the TP/CRTH2 antagonist ramatroban. delta12-PGD2 bound to CRTH2 receptor with a pKi of 7.63, and a 55-fold selectivity for CRTH2 compared to DP. In Th2 lymphocytes, delta12-PGD2 induced calcium mobilization with high potency and an efficacy similar to that of PGD2. delta12-PGD2 also caused activation of eosinophils as measured by shape change. Taken together, these results show that delta12-PGD2 is a potent and selective agonist for CRTH2 receptor and can cause activation of eosinophils and Th2 lymphocytes. These data also confirm the selective effect of other PGD2 metabolites on CRTH2 and illustrate how the metabolism of PGD2 may influence the pattern of leukocyte infiltration at sites of allergic inflammation.


Assuntos
Eosinófilos/fisiologia , Prostaglandina D2/farmacologia , Receptores Imunológicos/agonistas , Receptores de Prostaglandina/agonistas , Células Th2/imunologia , Animais , Sequência de Bases , Células CHO , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Forma Celular , Clonagem Molecular , Cricetinae , Primers do DNA , Eosinófilos/citologia , Eosinófilos/efeitos dos fármacos , Humanos , Cinética , Dados de Sequência Molecular , Receptores Imunológicos/efeitos dos fármacos , Receptores Imunológicos/genética , Receptores de Prostaglandina/efeitos dos fármacos , Receptores de Prostaglandina/genética , Proteínas Recombinantes/efeitos dos fármacos , Células Th2/efeitos dos fármacos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA