Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 12(11)2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146386

RESUMO

The durability and serviceability of concrete structures is influenced by both the early-age behavior of concrete as well as its long-term response in terms of shrinkage and creep. Hygro-thermo-chemo-mechanical models, as they are used in the present publication, offer the possibility to consistently model the behavior of concrete from the first hours to several years. However, shortcomings of the formulation based on effective stress, which is usually employed in such multiphase models, were identified. As a remedy, two alternative formulations with a different coupling of shrinkage and creep are proposed in the present publication. Both assume viscous flow creep to be driven by total stress instead of effective stress, while viscoelastic creep is driven either by total or effective stress. Therefore, in contrast to the formulation based on effective stress, they predict a limit value for shrinkage as observed in long-term drying shrinkage tests. Shrinkage parameters for the new formulations are calibrated based on drying shrinkage data obtained from thin slices. The calibration process is straightforward for the new formulations since they decouple shrinkage and viscous flow creep. The different formulations are compared using results from shrinkage tests on sealed and unsealed cylindrical specimens. Shrinkage strain predictions are significantly improved by the new formulations.

2.
Materials (Basel) ; 12(5)2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30866502

RESUMO

Hygro-thermo-chemo-mechanical modelling of time-dependent concrete behavior requires the accurate determination of a large set of parameters. In this paper, the parameters of a multiphase model are calibrated based on a comprehensive set of experiments for a particular concrete of grade C30/37. The experiments include a calorimetry test, tests for age-dependent mechanical properties, tests for determining the water desorption isotherm, shrinkage tests, and compressive creep tests. The latter two were performed on sealed and unsealed specimens with accompanying mass water content measurements. The multiphase model is based on an effective stress formulation. It features a porosity-dependent desorption isotherm, taking into account the time-dependency of the desorption properties. The multiphase model is shown to yield excellent results for the evolutions of the mechanical parameters. The evolution of the autogenous shrinkage strain and evolutions of the creep compliances for loading at concrete ages of 2 days, 7 days, and 28 days are well predicted together with the respective mass water content evolution. This also holds for the evolution of the drying shrinkage strain, at least for moderate drying up to one year. However, it will be demonstrated that for longer drying times further conceptual thoughts concerning the coupled representation of shrinkage and creep are required.

3.
Materials (Basel) ; 11(1)2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29342915

RESUMO

The authors would like to correct following typing errors: For (3) and (4), the correct expressions are given as[...].

4.
Materials (Basel) ; 10(1)2017 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-28772445

RESUMO

The aims of the present paper are (i) to briefly review single-field and multi-field shotcrete models proposed in the literature; (ii) to propose the extension of a damage-plasticity model for concrete to shotcrete; and (iii) to evaluate the capabilities of the proposed extended damage-plasticity model for shotcrete by comparing the predicted response with experimental data for shotcrete and with the response predicted by shotcrete models, available in the literature. The results of the evaluation will be used for recommendations concerning the application and further improvements of the investigated shotcrete models and they will serve as a basis for the design of a new lab test program, complementing the existing ones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA