Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Med ; 13(10): e1002138, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27701420

RESUMO

BACKGROUND: Artemisinin resistance observed in Southeast Asia threatens the continued use of artemisinin-based combination therapy in endemic countries. Additionally, the diversity of chemical mode of action in the global portfolio of marketed antimalarials is extremely limited. Addressing the urgent need for the development of new antimalarials, a chemical class of potent antimalarial compounds with a novel mode of action was recently identified. Herein, the preclinical characterization of one of these compounds, ACT-451840, conducted in partnership with academic and industrial groups is presented. METHOD AND FINDINGS: The properties of ACT-451840 are described, including its spectrum of activities against multiple life cycle stages of the human malaria parasite Plasmodium falciparum (asexual and sexual) and Plasmodium vivax (asexual) as well as oral in vivo efficacies in two murine malaria models that permit infection with the human and the rodent parasites P. falciparum and Plasmodium berghei, respectively. In vitro, ACT-451840 showed a 50% inhibition concentration of 0.4 nM (standard deviation [SD]: ± 0.0 nM) against the drug-sensitive P. falciparum NF54 strain. The 90% effective doses in the in vivo efficacy models were 3.7 mg/kg against P. falciparum (95% confidence interval: 3.3-4.9 mg/kg) and 13 mg/kg against P. berghei (95% confidence interval: 11-16 mg/kg). ACT-451840 potently prevented male gamete formation from the gametocyte stage with a 50% inhibition concentration of 5.89 nM (SD: ± 1.80 nM) and dose-dependently blocked oocyst development in the mosquito with a 50% inhibitory concentration of 30 nM (range: 23-39). The compound's preclinical safety profile is presented and is in line with the published results of the first-in-man study in healthy male participants, in whom ACT-451840 was well tolerated. Pharmacokinetic/pharmacodynamic (PK/PD) modeling was applied using efficacy in the murine models (defined either as antimalarial activity or as survival) in relation to area under the concentration versus time curve (AUC), maximum observed plasma concentration (Cmax), and time above a threshold concentration. The determination of the dose-efficacy relationship of ACT-451840 under curative conditions in rodent malaria models allowed prediction of the human efficacious exposure. CONCLUSION: The dual activity of ACT-451840 against asexual and sexual stages of P. falciparum and the activity on P. vivax have the potential to meet the specific profile of a target compound that could replace the fast-acting artemisinin component and harbor additional gametocytocidal activity and, thereby, transmission-blocking properties. The fast parasite reduction ratio (PRR) and gametocytocidal effect of ACT-451840 were recently also confirmed in a clinical proof-of-concept (POC) study.


Assuntos
Acrilamidas/farmacologia , Antimaláricos/farmacologia , Piperazinas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium vivax/efeitos dos fármacos , Acrilamidas/farmacocinética , Animais , Antimaláricos/farmacocinética , Artemisininas/farmacologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Testes de Sensibilidade Microbiana , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Piperazinas/farmacocinética , Plasmodium berghei/efeitos dos fármacos
2.
Antimicrob Agents Chemother ; 60(3): 1430-7, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26666931

RESUMO

Malaria remains a major global health problem, with more than half of the world population at risk of contracting the disease and nearly a million deaths each year. Here, we report the discovery of inhibitors that target multiple stages of malaria parasite growth. To identify these inhibitors, we took advantage of the Tres Cantos Antimalarial Compound Set (TCAMS) small-molecule library, which is comprised of diverse and potent chemical scaffolds with activities against the blood stage of the malaria parasite, and investigated their effects against the elusive liver stage of the malaria parasite using a forward chemical screen. From a screen of nearly 14,000 compounds, we identified and confirmed 103 compounds as dual-stage malaria inhibitors. Interestingly, these compounds show preferential inhibition of parasite growth in liver- versus blood-stage malaria parasite assays, highlighting the drug susceptibility of this parasite form. Mode-of-action studies were completed using genetically modified and drug-resistant Plasmodium parasite strains. While we identified some compound targets as classical antimalarial pathways, such as the mitochondrial electron transport chain through cytochrome bc1 complex inhibition or the folate biosynthesis pathway, most compounds induced parasite death through as yet unknown mechanisms of action. Importantly, the identification of new chemotypes with different modes of action in killing Plasmodium parasites represents a promising opportunity for probing essential and novel molecular processes that remain to be discovered. The chemical scaffolds identified with activity against drug-resistant Plasmodium parasites represent starting points for dual-stage antimalarial development to surmount the threat of malaria parasite drug resistance.


Assuntos
Antimaláricos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Animais Geneticamente Modificados , Anopheles/parasitologia , Di-Hidro-Orotato Desidrogenase , Células Hep G2/efeitos dos fármacos , Células Hep G2/parasitologia , Humanos , Terapia de Alvo Molecular/métodos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo
3.
Malar J ; 13: 143, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24731288

RESUMO

BACKGROUND: Repositioning of existing drugs has been suggested as a fast track for developing new anti-malarial agents. The compound libraries of GlaxoSmithKline (GSK), Pfizer and AstraZeneca (AZ) comprising drugs that have undergone clinical studies in other therapeutic areas, but not achieved approval, and a set of US Food and Drug Administration (FDA)-approved drugs and other bio-actives were tested against Plasmodium falciparum blood stages. METHODS: Molecules were tested initially against erythrocytic co-cultures of P. falciparum to measure proliferation inhibition using one of the following methods: SYBR®I dye DNA staining assay (3D7, K1 or NF54 strains); [(3)H] hypoxanthine radioisotope incorporation assay (3D7 and 3D7A strain); or 4',6-diamidino-2-phenylindole (DAPI) DNA imaging assay (3D7 and Dd2 strains). After review of the available clinical pharmacokinetic and safety data, selected compounds with low µM activity and a suitable clinical profile were tested in vivo either in a Plasmodium berghei four-day test or in the P. falciparum Pf3D7(0087/N9) huSCID 'humanized' mouse model. RESULTS: Of the compounds included in the GSK and Pfizer sets, 3.8% (9/238) had relevant in vitro anti-malarial activity while 6/100 compounds from the AZ candidate drug library were active. In comparison, around 0.6% (24/3,800) of the FDA-approved drugs and other bio-actives were active. After evaluation of available clinical data, four investigational drugs, active in vitro were tested in the P. falciparum humanized mouse model: UK-112,214 (PAF-H1 inhibitor), CEP-701 (protein kinase inhibitor), CEP-1347 (protein kinase inhibitor), and PSC-833 (p-glycoprotein inhibitor). Only UK-112,214 showed significant efficacy against P. falciparum in vivo, although at high doses (ED90 131.3 mg/kg [95% CI 112.3, 156.7]), and parasitaemia was still present 96 hours after treatment commencement. Of the six actives from the AZ library, two compounds (AZ-1 and AZ-3) were marginally efficacious in vivo in a P. berghei model. CONCLUSIONS: Repositioning of existing therapeutics in malaria is an attractive proposal. Compounds active in vitro at µM concentrations were identified. However, therapeutic concentrations may not be effectively achieved in mice or humans because of poor bio-availability and/or safety concerns. Stringent safety requirements for anti-malarial drugs, given their widespread use in children, make this a challenging area in which to reposition therapy.


Assuntos
Antimaláricos/farmacologia , Reposicionamento de Medicamentos , Malária/tratamento farmacológico , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Animais , Malária Falciparum/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Parasitária
4.
ChemMedChem ; 8(2): 313-21, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23307663

RESUMO

With the aim of fuelling open-source, translational, early-stage drug discovery activities, the results of the recently completed antimycobacterial phenotypic screening campaign against Mycobacterium bovis BCG with hit confirmation in M. tuberculosis H37Rv were made publicly accessible. A set of 177 potent non-cytotoxic H37Rv hits was identified and will be made available to maximize the potential impact of the compounds toward a chemical genetics/proteomics exercise, while at the same time providing a plethora of potential starting points for new synthetic lead-generation activities. Two additional drug-discovery-relevant datasets are included: a) a drug-like property analysis reflecting the latest lead-like guidelines and b) an early lead-generation package of the most promising hits within the clusters identified.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Descoberta de Drogas/métodos , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bases de Dados de Produtos Farmacêuticos , Células Hep G2 , Ensaios de Triagem em Larga Escala , Humanos , Testes de Sensibilidade Microbiana , Tuberculose/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA