Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38728130

RESUMO

Weight learning forms a basis for the machine learning and numerous algorithms have been adopted up to date. Most of the algorithms were either developed in the stochastic framework or aimed at minimization of loss or regret functions. Asymptotic convergence of weight learning, vital for good output prediction, was seldom guaranteed for online applications. Since linear regression is the most fundamental component in machine learning, we focus on this model in this paper. Aiming at online applications, a deterministic analysis method is developed based on LaSalle's invariance principle. Convergence conditions are derived for both the first-order and the second-order learning algorithms, without resorting to any stochastic argument. Moreover, the deterministic approach makes it easy to analyze the noise influence. Specifically, adaptive hyperparameters are derived in this framework and their tuning rules disclosed for the compensation of measurement noise. Comparison with four most popular algorithms validates that this approach has a higher learning capability and is quite promising in enhancing the weight learning performance.

2.
Int J Biol Macromol ; : 132549, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38782331

RESUMO

Bovine serum albumin nanofibrils (BSNs) were fabricated under thermal treatment (85 °C) at acidic condition (pH 2.0) and the incubation time on the structural, and physicochemical characteristics were probed. The formation and development of BSNs have been detected and confirmed by Thioflavin T (ThT) fluorescence and circular dichroism (CD) measurements. The structural alterations of bovine serum albumin (BSA) have also been investigated using intrinsic fluorescence and Congo red (CGR) UV-vis spectroscopy. Atomic force microscopy (AFM) outcomes displayed the morphologies of BSNs at varied time, with a diameter of about 3 nm and a contour length of about 200 nm at 24 h. The apparent viscosities of BSNs at three different pH were in the following order: pH 3.0 > pH 5.0 > pH 7.0. Emulsifying and foaming properties of BSA were pronouncedly enhanced through fibrillation, which was highly correlated with the interfacial properties and structural characteristics. Highest EAI 54.2 m2/g was attained at 48 h and no pronounced alterations were observed for EAI at 24 h and 48 h. Maximum value of FC was obtained at 48 h for BSA. This study will provide some useful information in understanding the formation of BSNs and broaden their application in food systems as functional food ingredients.

3.
ACS Biomater Sci Eng ; 10(5): 2925-2934, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38587986

RESUMO

Spider dragline (major ampullate) silk is one of the toughest known fibers in nature and exhibits an excellent combination of high tensile strength and elasticity. Increasing evidence has indicated that preassembly plays a crucial role in facilitating the proper assembly of silk fibers by bridging the mesoscale gap between spidroin molecules and the final strong fibers. However, it remains challenging to control the preassembly of spidroins and investigate its influence on fiber structural and mechanical properties. In this study, we explored to bridge this gap by modulating the polyalanine (polyA) motifs in repetitive region of spidroins to tune their preassemblies in aqueous dope solutions. Three biomimetic silk proteins with varying numbers of alanine residues in polyA motif and comparable molecular weights were designed and biosynthesized, termed as N16C-5A, N15C-8A, and N13C-12A, respectively. It was found that all three proteins could form nanofibril assemblies in the concentrated aqueous dopes, but the size and structural stability of the fibrils were distinct from each other. The silk protein N15C-8A with 8 alanine residues in polyA motif allowed for the formation of stable nanofibril assemblies with a length of approximately 200 nm, which were not prone to disassemble or aggregate as that of N16C-5A and N13C-12A. More interestingly, the stable fibril assembly of N15C-8A enabled spinning of simultaneously strong (623.3 MPa) and tough (107.1 MJ m-3) synthetic fibers with fine molecular orientation and close interface packing of fibril bundles. This work highlights that modulation of polyA motifs is a feasible way to tune the morphology and stability of the spidroin preassemblies in dope solutions, thus controlling the structural and mechanical properties of the resulting fibers.


Assuntos
Fibroínas , Peptídeos , Resistência à Tração , Fibroínas/química , Fibroínas/genética , Peptídeos/química , Seda/química , Animais , Motivos de Aminoácidos , Nanofibras/química , Aranhas/química
4.
Endocrine ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285411

RESUMO

PURPOSE: The relationship between trimethylamine N-oxide (TMAO) and bone mineral density (BMD) in type 2 diabetes mellitus (T2DM) is unclear. We explore the relationship between TMAO levels and BMD in T2DM. METHODS: This is a cross-sectional study. 254 T2DM patients were enrolled and divided into three groups by TMAO tertiles, and the clinical data were collected. BMD was determined by dual-energy X-ray absorptiometry (DXA) and serum TMAO levels was determined by stable isotope dilution high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). RESULTS: Patients in the highest tertile of TMAO levels (TMAO > 6.72 µmol/L) showed relatively low BMD and a higher number of fracture history, osteoporosis (OP) than those in the lower tertiles. Spearman correlation analysis showed that serum TMAO was negatively correlated with BMD of whole body (WB), lumbar spine (LS) and femoral neck (FN), while TMAO was positive correlated with osteoporotic fracture (p < 0.05). Logistic regression models showed that TMAO was an independent influencing factor of fracture history after adjusting for confounders in TMAO > 6.72 µmol/L group. CONCLUSIONS: There is a significant linear correlation between TMAO levels and BMD in T2DM patients. Especially in TMAO > 6.72 µmol/L group, TMAO was negatively correlated with WB, LS, and FN BMD, and was positive correlated with osteoporotic fracture in T2DM patients. The findings suggest that elevated TMAO levels are associated with OP and osteoporotic fracture in T2DM patients.

5.
Front Neurol ; 14: 1273822, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37941571

RESUMO

Background: Cerebral extracranial-intracranial (EC-IC) revascularization technique (superficial temporal artery-middle cerebral artery (STA-MCA) bypass grafting) has become the preferred surgical method for the treatment of Moyamoya disease (MMD). We attempted to completely free the two branches of the superficial temporal artery without disconnection. Extracranial and intracranial blood flow reconstruction were then modified by selectively performing a direct bypass technique on one branch and a patch fusion technique on the other of the STA based on the blood flow and the vascular diameter of the intracranial surface blood vessels. Methods: A series of modified STA-MCA bypass surgeries performed consecutively between March 2022 and March 2023 were reviewed and compared to conventional combined bypass surgeries performed during the same period. The following information was collected from all enrolled patients: demographic characteristics, clinical symptoms, and preoperative and postoperative imaging, including Suzuki stage and Matsushima grade. The modified Rankin scale (mRS) was used to assess the changes in neurological status before and after surgery. Results: A total of 41 patients with Moyamoya disease (MMD) who underwent cerebral revascularization were included in this study, of which 30 were conventional revascularization and 11 were modified revascularization. The mean age was 49.91 years, and 18 (43.9%) of the patients were women. The modified group had a lower incidence of cerebral hyperperfusion syndrome (18.2%) than the conventional group (23.3%). After at least 3 months of follow-up, the bypass patency rate remained 100% in the modified group and 93.3% in the conventional group. All patients in the modified group achieved a better Matsushima grade (A + B), with six (54.5%) having an A and five (45.5%) having a B. In contrast, four patients (13.3%) in the conventional group had a Matsushima grade of C. In all, 72.8% of the modified group had postoperative mRS scores of 0 and 1, which was higher than that of the traditional group (63.3%). Conclusion: The improved STA-MCA bypass could provide blood flow to multiple cerebral ischemic areas, reduce excessive blood perfusion, and ensure blood supply to the scalp, with lower complications and better clinical benefits than the traditional combined bypass.

6.
World J Clin Cases ; 11(27): 6551-6557, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37900255

RESUMO

BACKGROUND: Undifferentiated pleomorphic sarcomas, also known as spindle cell sarcomas, are a relatively uncommon subtype of soft tissue sarcomas in clinical practice. CASE SUMMARY: We present a case report of a 69-year-old female patient who was diagnosed with undifferentiated spindle cell soft tissue sarcoma on her left thigh. Surgical excision was initially performed, but the patient experienced a local recurrence following multiple surgeries and radioactive particle implantations. High-intensity focused ultrasound (HIFU) was subsequently administered, resulting in complete ablation of the sarcoma without any significant complications other than bone damage at the treated site. However, approximately four months later, the patient experienced a broken lesion at the original location. After further diagnostic workup, the patient underwent additional surgery and is currently stable with a good quality of life. CONCLUSION: HIFU has shown positive outcomes in achieving local control of limb spindle cell sarcoma, making it an effective non-invasive treatment option.

7.
Stem Cell Res Ther ; 14(1): 233, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667370

RESUMO

BACKGROUND: To explore whether local transplantation of mesenchymal stem cells (MSCs) in temporal muscle can promote collateral angiogenesis and to analyze its main mechanisms of promoting angiogenesis. METHODS: Bilateral carotid artery stenosis (BCAS) treated mice were administrated with encephalo-myo-synangiosis (EMS), and bone marrow mesenchymal stem cells (BMSCs) were transplanted into the temporal muscle near the cerebral cortex. On the 30th day after EMS, the Morris water maze, immunofluorescence, laser speckle imaging, and light sheet microscopy were performed to evaluate angiogenesis; In addition, rats with bilateral common carotid artery occlusion were also followed by EMS surgery, and BMSCs from GFP reporter rats were transplanted into the temporal muscle to observe the survival time of BMSCs. Then, the concentrated BMSC-derived conditioned medium (BMSC-CM) was used to stimulate HUVECs and BMECs for ki-67 immunocytochemistry, CCK-8, transwell and chick chorioallantoic membrane assays. Finally, the cortical tissue near the temporal muscle was extracted after EMS, and proteome profiler (angiogenesis array) as well as RT-qPCR of mRNA or miRNA was performed. RESULTS: The results of the Morris water maze 30 days after BMSC transplantation in BCAS mice during the EMS operation, showed that the cognitive impairment in the BCAS + EMS + BMSC group was alleviated (P < 0.05). The results of immunofluorescence, laser speckle imaging, and light sheet microscopy showed that the number of blood vessels, blood flow and astrocytes increased in the BCAS + EMS + BMSC group (P < 0.05). The BMSCs of GFP reporter rats were applied to EMS and showed that the transplanted BMSCs could survive for up to 14 days. Then, the results of ki-67 immunocytochemistry, CCK-8 and transwell assays showed that the concentrated BMSC-CM could promote the proliferation and migration of HUVECs and BMECs (P < 0.05). Finally, the results of proteome profiler (angiogenesis array) in the cerebral cortex showed that the several pro-angiogenesis factors (such as MMP-3, MMP-9, IGFBP-2 or IGFBP-3) were notably highly expressed in MSC transplantation group compared to others. CONCLUSIONS: Local MSCs transplantation together with EMS surgery can promote angiogenesis and cognitive behavior in chronic brain ischemia mice. Our study illustrated that MSC local transplantation can be the potential therapeutical option for improving EMS treatment efficiency which might be translated into clinical application.


Assuntos
Isquemia Encefálica , Células-Tronco Mesenquimais , Camundongos , Ratos , Animais , Antígeno Ki-67 , Proteoma , Sincalida , Neovascularização Patológica , Isquemia Encefálica/terapia
8.
Small Methods ; 7(10): e2300445, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37349902

RESUMO

Blood-based tumor liquid biopsies are promising as an alternative or complement to tissue biopsies due to their noninvasiveness, convenience, and safety, and there is still a great demand for the discovery of new biomarkers for these biopsies. Here, nanoscale distribution patterns of subcellular structures in platelets, as imaged by structured illumination superresolution fluorescence microscopy, as a new type of potential biomarker for tumor liquid biopsies are presented. A standardized protocol for platelet sample preparation and developed an automated high-throughput image analysis workflow is established. The diagnostic capability based on the statistical analysis of 280 000 superresolution images of individual platelets from a variety of tumor patients, benign mass patients, and healthy volunteers (n = 206) is explored. These results suggest that the nanoscale distribution patterns of α-granules in platelets have the potential to be biomarkers for several cancers, including glioma and cervical, endometrial, and ovarian cancers, facilitating not only diagnosis but also therapeutic monitoring. This study provides a promising novel type of platelet parameter for tumor liquid biopsies at the subcellular level rather than the existing cellular or molecular level and opens up a new avenue for clinical applications of superresolution imaging techniques.


Assuntos
Plaquetas , Neoplasias , Humanos , Microscopia de Fluorescência/métodos , Neoplasias/diagnóstico por imagem , Biópsia Líquida , Biomarcadores
9.
Mol Ther ; 31(5): 1313-1331, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36739479

RESUMO

Astrocyte-microglial interaction plays a crucial role in brain injury-associated neuroinflammation. Our previous data illustrated that astrocytes secrete microRNA, leading to anti-inflammatory effects on microglia. Long non-coding RNAs participate in neuroinflammation regulation after traumatic brain injury. However, the effect of astrocytes on microglial phenotype via long non-coding RNAs and the underlying molecular mechanisms remain elusive. We used long non-coding RNA sequencing on murine astrocytes and found that exosomal long non-coding RNA 4933431K23Rik attenuated traumatic brain injury-induced microglial activation in vitro and in vivo and ameliorated cognitive function deficiency. Furthermore, microRNA and messenger RNA sequencing together with binding prediction illustrated that exosomal long non-coding RNA 4933431K23Rik up-regulates E2F7 and TFAP2C expression by sponging miR-10a-5p. Additionally, E2F7 and TFAP2C, as transcription factors, regulated microglial Smad7 expression. Using Cx3cr1-Smad7 overexpression of adeno-associated virus, microglia specifically overexpressed Smad7 in the attenuation of neuroinflammation, resulting in less cognitive deficiency after traumatic brain injury. Mechanically, overexpressed Smad7 physically binds to IκBα and inhibits its ubiquitination, preventing NF-κB signaling activation. The Smad7 activator asiaticoside alleviates neuroinflammation and protects neuronal function in traumatic brain injury mice. This study revealed that an exosomal long non-coding RNA from astrocytes attenuates microglial activation after traumatic brain injury by up-regulating Smad7, providing a potential therapeutic target.


Assuntos
Lesões Encefálicas Traumáticas , MicroRNAs , RNA Longo não Codificante , Camundongos , Animais , Microglia/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Astrócitos/metabolismo , Doenças Neuroinflamatórias , MicroRNAs/metabolismo , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , Fenótipo , Camundongos Endogâmicos C57BL
10.
Transl Stroke Res ; 14(4): 608-623, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36181627

RESUMO

Moyamoya disease (MMD) is characterized by frequent migration and phenotypic transformation of vascular smooth muscle cells (VSMCs) in the intima layer of blood vessels. However, the underlying mechanism is unclear. Toll-like receptor (TLR) 7 is abundantly expressed in smooth muscle cells (SMCs) in multiple vascular diseases, which might be linked to the disease-associated vascular remodeling. In the present study, the expression of TLR7 in MMD vessels was examined using the superficial temporal artery (STA) and middle cerebral artery (MCA) from MMD patients. Furthermore, the effect of TLR7 activation on the VSMC phenotype switch in vitro and vascular remodeling in vivo was assessed using a 9.4Tesla MRI. Our results demonstrated that the TLR7 and microRNA Let-7c expression are upregulated in VSMCs and the plasma of MMD patients, respectively. Additionally, TLR7 stimulation by Let-7c or Imiquimod induces a synthetic phenotype switch in VSMCs. Mechanistic studies revealed that Akt/mTOR signaling is responsible for this TLR-induced VSMC phenotypic switch. The Let-7c or Imiquimod treatment also resulted in reduced blood flow of internal carotid arteries (ICAs) in an in vivo model, while TLR7 inhibition attenuated the ICA stenosis. Besides, Let-7c was also found to be elevated in the hypoxic endothelial cells. Taken together, our study demonstrates that Let-7c released by endothelial cells under hypoxic conditions may activate TLR7 on VSMCs, ultimately leading to the phenotype switch and vascular wall remodeling. These findings thus elucidate the putative mechanisms underlying progressive stenosis of blood vessels in MMD and provide prospective therapeutic targets for further exploration.


Assuntos
Doença de Moyamoya , Humanos , Doença de Moyamoya/genética , Remodelação Vascular/fisiologia , Constrição Patológica/metabolismo , Células Endoteliais/metabolismo , Imiquimode/metabolismo , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Miócitos de Músculo Liso/metabolismo , Proliferação de Células , Fenótipo
11.
Cells ; 11(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36497052

RESUMO

Moyamoya disease (MMD) is an occlusive, chronic cerebrovascular disease affected by genetic mutation and the immune response. Furthermore, vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) participate in the neointima of MMD, but the etiology and pathophysiological changes in MMD vessels remain largely unknown. Therefore, we established the circZXDC (ZXD family zinc finger C)-miR-125a-3p-ABCC6 (ATP-binding cassette subfamily C member 6) axis from public datasets and online tools based on "sponge-like" interaction mechanisms to investigate its possible role in VSMCs. The results from a series of in vitro experiments, such as dual luciferase reporter assays, cell transfection, CCK-8 assays, Transwell assays, and Western blotting, indicate a higher level of circZXDC in the MMD plasma, especially in those MMD patients with the RNF213 mutation. Moreover, circZXDC overexpression results in a VSMC phenotype switching toward a synthetic status, with increased proliferation and migration activity. CircZXDC sponges miR-125a-3p to increase ABCC6 expression, which induces ERS (endoplasmic reticulum stress), and subsequently regulates VSMC transdifferentiation from the contractive phenotype to the synthetic phenotype, contributing to the intima thickness of MMD vessels. Our findings provide insight into the pathophysiological mechanisms of MMD and indicate that the circZXDC-miR-125a-3p-ABCC6 axis plays a pivotal role in the progression of MMD. Furthermore, circZXDC might be a diagnostic biomarker and an ABCC6-specific inhibitor and has the potential to become a promising therapeutic option for MMD.


Assuntos
MicroRNAs , Doença de Moyamoya , Proteínas Associadas à Resistência a Múltiplos Medicamentos , RNA Circular , Humanos , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proliferação de Células/genética , Transdiferenciação Celular , Células Endoteliais/metabolismo , MicroRNAs/metabolismo , Doença de Moyamoya/genética , Doença de Moyamoya/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Músculo Liso Vascular/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , RNA Circular/genética
12.
Brain Sci ; 12(10)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36291219

RESUMO

OBJECTIVE: To analyze the risk factors of transient neurological deficits (TND) and perioperative stroke in patients with MMD after extracranial-intracranial revascularization. METHODS: A retrospective analysis of the clinical data of 183 patients with MMD undergoing 203 EC-IC bypass operation procedures from January 2018 to August 2020. According to whether TND and stroke occurred within 14 days after operation, univariate analysis and multivariate logistic regression were used. RESULTS: TND occurred in 26 cases (12.8%) of revascularization. The results of the univariate analysis showed that history of diabetes, multiple episodes of preoperative symptoms, lesions involving the posterior circulation, and high postoperative blood pressure are the risk factors of TND. Further multivariate logistic regression analysis showed that multiple episodes of preoperative symptoms (p = 0.016) and lesions involving the posterior circulation (p = 0.014) are the independent risk factors for TND. Perioperative stroke occurred in 12 cases (5.9%). The results of the univariate analysis showed that older age, history of hypertension, preoperative cerebral infarction as the main symptom, lesions involving the posterior circulation, and high perioperative blood pressure are the risk factors of perioperative stroke. The results of multivariate logistic regression analysis showed that preoperative cerebral infarction as the main symptom (p = 0.015) is an independent risk factor for perioperative stroke. The occurrence of perioperative complications was not related to the improvement of follow-up mRS (Modified Rankin Scale) score and long-term cerebral rehemorrhage. CONCLUSIONS: Clinically, patients with MMD have multiple episodes of preoperative symptoms, lesions involving the posterior circulation, and preoperative cerebral infarction and should be attached when undergoing revascularization.

13.
ACS Biomater Sci Eng ; 8(8): 3299-3309, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35820196

RESUMO

Spider dragline silk is a remarkable protein fiber that is mechanically superior to almost any other natural or synthetic material. As a sustainable supply of natural dragline silk is not feasible, recombinant production of silk fibers with native-like mechanical properties and non-native physiochemical functions is highly desirable for various applications. Here, we report a new strategy for simultaneous functionalization and reinforcement of recombinant spider silk fibers by confined nanoparticle formation. First, a mimic silk protein (N16C) of spider Trichonephila clavipes was recombinantly produced and wet-spun into fibers. Drawing the as-spun fibers in water led to post-drawn fibers more suitable for the templated synthesis of nanoparticles (NPs) with uniform distribution throughout the synthetic fibers. This was exemplified using a chemical precipitation reaction to generate copper sulfide nanoparticle-incorporated fibers. These fibers and the derived fabric displayed a significant photothermal effect as their temperatures could increase to over 40 °C from room temperature within 3 min under near-infrared laser irradiation or simulated sunlight. In addition, the tensile strength and toughness of the nanofunctionalized fibers were greatly enhanced, and the toughness of these synthetic fibers could reach 160.1 ± 21.4 MJ m-3, which even exceeds that of natural spider dragline silk (111.19 ± 30.54 MJ m-3). Furthermore, the confined synthesis of gold NPs via a redox reaction was shown to improve the ultraviolet-protective effect and tensile mechanical properties of synthetic silk fibers. These results suggest that our strategy may have great potential for creating functional and high-performance spider silk fibers and fabrics for wide applications.


Assuntos
Fibroínas , Nanopartículas , Fibroínas/química , Seda/química , Resistência à Tração
14.
Cancers (Basel) ; 14(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35565340

RESUMO

Temozolomide (TMZ) is the first line of standard therapy in glioblastoma (GBM). However, relapse occurs due to TMZ resistance. We attempted to establish an acquired TMZ resistance model that recapitulates the TMZ resistance phenotype and the relevant gene signature. Two GBM cell lines received two cycles of TMZ (150 µM) treatment for 72 h each. Regrown cells (RG2) were defined as TMZ resistant cells. MTT assay revealed significantly less susceptibility and sustained growth of RG2 compared with parental cells after TMZ challenge. TMZ-induced DNA damage significantly decreased in 53BP1-foci reporter transduced-RG2 cells compared with parental cells, associated with downregulation of MSH2 and MSH6. Flow cytometry revealed reduced G2/M arrest, increased EdU incorporation and suppressed apoptosis in RG2 cells after TMZ treatment. Colony formation and neurosphere assay demonstrated enhanced clonogenicity and neurosphere formation capacity in RG2 cells, accompanied by upregulation of stem markers. Collectively, we established an acute TMZ resistance model that recapitulated key features of TMZ resistance involving impaired mismatch repair, redistribution of cell cycle phases, increased DNA replication, reduced apoptosis and enhanced self-renewal. Therefore, this model may serve as a promising research tool for studying mechanisms of TMZ resistance and for defining therapeutic approaches to GBM in the future.

15.
J Stroke Cerebrovasc Dis ; 31(8): 106142, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35598413

RESUMO

BACKGROUND: The neuroprotective roles of mesenchymal stem cells (MSCs) in brain injury are elicited at least partially through the secretion exosomes containing microRNAs (miRNAs). We herein investigate the protective function of bone marrow MSCs (BMSCs)-derived exosomes harboring miR-455-3p against hippocampal neuronal injury in mouse and N2a cell damage model. METHODS: First, BMSC surface markers were detected by flow cytometry, followed by extraction of BMSCs-derived exosomes (BMSCs-Exos). A mouse model of neuronal injury was induced by middle cerebral artery occlusion/reperfusion (MCAO/R), and N2a cells were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) for in vitro experiments. BMSCs-Exos were administrated in mice and N2a cells. We subsequently determined viability- and apoptosis-features using EdU staining, CCK-8, flow cytometry and Caspase-3 kits. Subsequently, we used RT-qPCR to assess miR-455-3p expression in brain tissues as well as N2a cells, and bioinformatic tools to predict the targeting mRNA of miR-455-3p, which was validated by dual-luciferase assays. RESULTS: BMSCs-Exos improved hippocampal neuronal injury in MCAO/R-treated mice and OGD/R-induced injury to N2a cells. BMSCs-Exos upregulated miR-455-3p expression in brain tissues of mice and OGD/R-treated N2a cells. miR-455-3p targeted and conversely regulated PDCD7 expression. The protective effect of BMSCs-Exos on OGD/R-treated N2a cells was markedly mitigated following miR-455-3p downregulation. Moreover, overexpression of miR-455-3p contributed to increased N2a cell activity and decreased apoptosis, while the rescue experiment results were opposite. CONCLUSION: MSCs-derived exosomal miR-455-3p targeted PDCD7 to alleviate hippocampal neuronal injury in MCAO/R-treated mice and injury of OGD/R-treated N2a cells.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Traumatismo por Reperfusão , Apoptose , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Medula Óssea/metabolismo , Exossomos/genética , Exossomos/metabolismo , Hipocampo/metabolismo , Humanos , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/terapia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Traumatismo por Reperfusão/metabolismo , Fatores de Transcrição/metabolismo
16.
Food Chem ; 384: 132509, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217463

RESUMO

The interactions between bovine α-lactalbumin and procyanidin B2 were fully investigated by spectroscopic methods and molecular docking. This study hypothesized that ALA could spontaneously interact with procyanidin B2 to form protein-based complex delivery carrier. Far UV CD and FTIR data demonstrated ALA's secondary structures were altered and intrinsic fluorescence quenching suggested ALA conformation was changed with procyanidin B2. Calorimetric technique illustrated ALA-procyanidin B2 complexation was a spontaneous and exothermic process with the number of binding site (n, 3.53) and the binding constant (Kb, 2.16 × 104 M-1). A stable nano-delivery system with ALA can be formed for encapsulating, stabilizing and delivering procyanidin B2. Molecular docking study further elucidated that hydrogen bonds dominated procyanidin B2 binding to ALA in a hydrophobic pocket. This study shows great potential in using ALA as protein-based nanocarriers for oral delivery of hydrophilic nutraceuticals, because procyanidin B2-loaded ALA complex delivery systems can be spontaneously formed.


Assuntos
Biflavonoides , Lactalbumina , Animais , Sítios de Ligação , Catequina , Bovinos , Lactalbumina/química , Simulação de Acoplamento Molecular , Proantocianidinas , Ligação Proteica , Estrutura Secundária de Proteína , Espectrometria de Fluorescência , Termodinâmica
17.
Int J Mol Med ; 49(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34751408

RESUMO

Neuroinflammatory processes mediated by microglial activation and subsequent neuronal damage are the hallmarks of traumatic brain injury (TBI). As an inhibitor of the macrophage­inducible C­type lectin (Mincle)/spleen tyrosine kinase (Syk) signaling pathway, BAY61­3606 (BAY) has previously demonstrated anti­inflammatory effects on some pathological processes, such as acute kidney injury, by suppressing the inflammatory macrophage response. In the present study, the potential effects of BAY on microglial phenotype and neuroinflammation after TBI were investigated. BAY (3 mg/kg) was first administered into mice by intraperitoneal injection after TBI induction in vivo and microglia were also treated with BAY (2 µM) in vitro. The levels of inflammatory factors in microglia were assessed using reverse transcription­quantitative PCR and ELISA. Cortical neuron, myelin sheath, astrocyte and cerebrovascular endothelial cell markers were detected using immunofluorescence. The levels of components of the Mincle/Syk/NF­κB signaling pathway [Mincle, phosphorylated (p)­Syk and NF­κB], in addition to proteins associated with inflammation (ASC, caspase­1, TNF­α, IL­1ß and IL­6), apoptosis (Bax and Bim) and tight junctions (Claudin­5), were measured via western blotting and ELISA. Migration and chemotaxis of microglial cells were evaluated using Transwell and agarose spot assays. Neurological functions of the mice were determined in vivo using the modified neurological severity scoring system and a Morris water maze. The results of the present study revealed that the expression levels of proteins in the Mincle/Syk/NF­κB signaling pathway (including Mincle, p­Syk and p­NF­κB), inflammatory cytokines (TNF­α, IL­1ß and IL­6), proteins involved in inflammation (ASC and caspase­1), apoptotic markers (Bax and Bim) and the tight junction protein Claudin­5 were significantly altered post­TBI. BAY treatment reversed these effects in both the cerebral cortex extract­induced cell model and the controlled cortical impact mouse model. BAY was also revealed to suppress activation of the microglial proinflammatory phenotype and microglial migration. In addition, BAY effectively attenuated TBI­induced neurovascular unit damage and neurological function deficits. Taken together, these findings provided evidence that BAY may inhibit the Mincle/Syk/NF­κB signaling pathway in microglia; this in turn could attenuate microglia­mediated neuroinflammation and improve neurological deficits following TBI.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Lectinas Tipo C/metabolismo , Microglia/efeitos dos fármacos , Niacinamida/análogos & derivados , Pirimidinas/farmacologia , Receptores Imunológicos/metabolismo , Quinase Syk/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/fisiopatologia , Estudos de Casos e Controles , Criança , Humanos , Masculino , Camundongos Endogâmicos C57BL , Microglia/patologia , Pessoa de Meia-Idade , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/fisiopatologia , Fármacos Neuroprotetores/farmacologia , Niacinamida/farmacologia , Células PC12 , Ratos , Adulto Jovem
18.
Front Pharmacol ; 12: 719823, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744713

RESUMO

Background: Phillyrin (Phi) is the main polyphenolic compound found in Forsythia suspensa. Recent studies have revealed that Phi has potent antioxidative and anti-inflammatory effects. However, whether Phi could relieve blood-brain barrier (BBB) damage following traumatic brain injury (TBI) remains unknown. Materials and Methods: Lipopolysaccharide (LPS) was used to activate primary microglia, which were then treated with different doses of Phi or the peroxisome proliferator-activated receptor-gamma (PPARγ) antagonist (GW9662). CCK-8 assay was used for evaluating cell viability, and the cytokines (including IL-1ß, IL-6, TNFα, IL-4, IL-10, and TGFß), microglial phenotypic markers (iNOS, COX2, and CD86 for "M1" polarization; Arg1, Ym1, and CD206 for "M2" polarization), PPARγ, and NF-κB were determined by RT-PCR, Western blot, or cellular immunofluorescence. Primary cultured mouse brain microvascular endothelial cells (BMECs) were stimulated by the condition medium (CM) from microglia. The cell viability, angiogenesis, and tight junction of BMECs were determined via CCK-8 assay, tube formation assay, and Western blot (for detecting MMP3, MMP9, ZO1, claudin-5, and occludin). Furthermore, the mouse TBI model was constructed and treated with Phi and/or GW9662. The BBB integrity was evaluated by H&E staining, Evans blue staining, and tissue immunofluorescence. Results: Phi markedly restrained the pro-inflammatory ("M1" state) cytokines and promoted anti-inflammatory ("M2" polarization) cytokines in LPS-mediated microglia. Phi mitigated "M1" polarization and promoted "M2" polarization of microglia via enhancing PPARγ and inhibiting the NF-κB pathway. The PPARγ antagonist GW9662 significantly repressed Phi-mediated anti-inflammatory effects. Meanwhile, Phi enhanced the viability, tube formation ability, and cell junction of BMECs. In the TBI mouse model, Phi promoted "M2" polarization, whereas it repressed the "M1" polarization of microglia. In addition, Phi reduced TBI-mediated BBB damage. However, the protective effects of Phi were reversed mainly by GW9662 treatment. Conclusion: Phi prevents BBB damage via inhibiting the neuroinflammation of microglia through the PPARγ/NF-κB pathway, which provides a potential therapeutic drug against TBI.

19.
Front Immunol ; 12: 637053, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34108959

RESUMO

Background: Programmed cell death 10 (PDCD10) plays a crucial role in regulating tumor phenotyping, especially in glioblastoma (GBM). Glioma-associated microglia/macrophages (GAMs) in tumor pathological microenvironment contribute to GBM progression. We previously found that the infiltration of GAMs was associated with PDCD10 expression in GBM patients. The present study aims to further explore the regulation of PDCD10 on GAMs in GBM. Methods: Overexpression of PDCD10 in human- and murine-GBM cells was established by lentiviral transduction. Cell behaviors and polarization of primary microglia, microglia- and macrophage-like cells were investigated through indirect co-culture with GBM cells in vitro respectively. The PDCD10-induced release of chemokines was identified by a chemokine protein array. The cross-talk between GBM and microglia as well as macrophages was further studied using selective antagonist SB225002. Finally, an orthotopic homograft mouse model was employed to verify the results of in vitro experiments. Results: Indirect co-culture with PDCD10-overexpressed GBM cells promoted proliferation and migration of microglia- and macrophage-like cells, and stimulated pro-tumorigenic polarization of primary microglia, microglia- and macrophage-like cells. Pdcd10-upregulated GBM cells triggered a nearly 6-fold increase of CXC motif chemokine ligand 2 (CXCL2) release, which in turn activated CXC chemokine receptor 2 (CXCR2) and downstream Erk1/2 and Akt signaling in primary microglia, microglia- and macrophage-like cells. The blockage of CXCR2 signaling with specific inhibitor (SB225002) abolished microglia- and macrophage-like cell migration induced by PDCD10-upregulated GBM cells. Moreover, Pdcd10-upregulated GL261 cells promoted GAMs recruitment and tumor growth in vivo. Conclusion: Our study demonstrates that overexpression of PDCD10 in GBM recruits and activates microglia/macrophages, which in turn promotes tumor progression. CXCL2-CXCR2 signaling mediated by PDCD10 is potentially involved in the crosstalk between GBM cells and GAMs.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Microglia/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quimiocina CXCL2/antagonistas & inibidores , Quimiocina CXCL2/metabolismo , Técnicas de Cocultura , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/genética , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Compostos de Fenilureia/farmacologia , Proteínas Proto-Oncogênicas/genética , Células RAW 264.7 , Receptores de Interleucina-8B/metabolismo , Transdução de Sinais/fisiologia , Microambiente Tumoral/fisiologia
20.
Food Chem ; 348: 129102, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33508599

RESUMO

The present study aimed to fabricate whey protein isolate (WPI)-sodium alginate (ALG) nanocomplexes for curcumin (CUR) stabilization in a model fat-free beverage. Mass ratio of 5:1 at pH 5.0 in the absence of NaCl was optimized for WPI-ALG nanocomplex fabrication. Mean particle size and zeta-potential of CUR-WPI-ALG nanocomplex was 209.9 nm and -39.1 mV at pH 5.0, respectively. Highest loading amount (LA) of CUR in CUR-WPI-ALG nanocomplex were 15.26 µg/mg. No obvious precipitates were observed for CUR-WPI-ALG nanocomplex under simulated food processing and storage conditions including high sucrose, high NaCl, and thermal treatment at 90 °C for 2 h. Fluorescence results confirmed that the spontaneous interaction between CUR and WPI-ALG nanocomplex was primarily motivated by hydrophobic interaction and hydrogen bonding. Compared with CUR (free), chemical stability (UV light, and heat), and DPPH scavenging capacities of CUR in CUR-WPI-ALG nanocomplex were strikingly improved.


Assuntos
Alginatos/química , Bebidas/análise , Curcumina/química , Proteínas do Soro do Leite/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA