Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
World J Diabetes ; 15(3): 418-428, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38591072

RESUMO

BACKGROUND: The prevalence of metabolic dysfunction-associated fatty liver disease (MAFLD) is rapidly increasing, currently affecting approximately 25% of the global population. Liver fibrosis represents a crucial stage in the development of MAFLD, with advanced liver fibrosis elevating the risks of cirrhosis and hepatocellular carcinoma. Simple serum markers are less effective in diagnosing liver fibrosis compared to more complex markers. However, imaging techniques like transient elastography face limitations in clinical application due to equipment and technical constraints. Consequently, it is imperative to identify a straightforward yet effective method for assessing MAFLD-associated liver fibrosis. AIM: To investigate the predictive value of angiopoietin-like protein 8 (ANGPTL8) in MAFLD and its progression. METHODS: We analyzed 160 patients who underwent abdominal ultrasonography in the Endocrinology Department, Xiaogan Central Hospital affiliated to Wuhan University of Science and Technology, during September 2021-July 2022. Using abdominal ultrasonography and MAFLD diagnostic criteria, among the 160 patients, 80 patients (50%) were diagnosed with MAFLD. The MAFLD group was divided into the liver fibrosis group (n = 23) and non-liver fibrosis group (n = 57) by using a cut-off fibrosis-4 index ≥ 1.45. Logistical regression was used to analyze the risk of MAFLD and the risk factors for its progression. Receiver operating characteristic curves were used to evaluate the predictive value of serum ANGPTL8 in MAFLD and its progression. RESULTS: Compared with non-MAFLD patients, MAFLD patients had higher serum ANGPTL8 and triglyceride-glucose (TyG) index (both P < 0.05). Serum ANGPTL8 (r = 0.576, P < 0.001) and TyG index (r = 0.473, P < 0.001) were positively correlated with MAFLD. Serum ANGPTL8 was a risk factor for MAFLD [odds ratio (OR): 1.123, 95% confidence interval (CI): 1.066-1.184, P < 0.001). Serum ANGPTL8 and ANGPTL8 + TyG index predicted MAFLD [area under the curve (AUC): 0.832 and 0.886, respectively; both P < 0.05]. Compared with MAFLD patients without fibrosis, those with fibrosis had higher serum ANGPTL8 and TyG index (both P < 0.05), and both parameters were positively correlated with MAFLD-associated fibrosis. Elevated serum ANGPTL8 (OR: 1.093, 95%CI: 1.044-1.144, P < 0.001) and TyG index (OR: 2.383, 95%CI: 1.199-4.736, P < 0.013) were risk factors for MAFLD-associated fibrosis. Serum ANGPTL8 and ANGPTL8 + TyG index predicted MAFLD-associated fibrosis (AUC: 0.812 and 0.835, respectively; both P < 0.05). CONCLUSION: The serum levels of ANGPTL8 are elevated and positively correlated with MAFLD. They can serve as predictors for the risk of MAFLD and liver fibrosis, with the ANGPTL8 + TyG index potentially exhibiting even higher predictive value.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123159, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37478709

RESUMO

A newly designed and synthesized Salamo-Salen-Salamo-Zn(II) complex sensor (sensor ZT) was extensively explored for anion sensing studies. The selectivity and sensitivity of the sensor ZT towards H2PO4- ions were based on ICT and CHEF effects, and via displacement pathways in DMSO/H2O (9:1, v/v) medium in the presence of other anions like, PO43-, HPO42- and P2O74- in a short time, separately. The prepared ZT sensor has excellent association constant and low detection lines. The sensing mechanism and binding mode of the sensor were studied by UV-Vis spectroscopy, HR-MS, 1H NMR titration and theory calculations (DFT & TD-DFT) for analytes. The time response and stability of the sensor are also given. Meanwhile, the sensor ZT can be widely used as a simple and effective solid-state optical sensor to detect H2PO4- by intuitive fluorescence changes. In addition, besides the environment can be used as a powerful instrument for detecting H2PO4-, based on the good biocompatibility and tissue permeability of ZT, effectively monitoring H2PO4- in cellular distribution by confocal microscopy using Zebrafish and bean sprout.


Assuntos
Corantes Fluorescentes , Peixe-Zebra , Animais , Ânions , Corantes Fluorescentes/química , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA