Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Cancer ; 16(1): 818, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27769200

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) has aggressive progression with poor prognosis and ineffective treatments. Selumetinib is an allosteric, ATP-noncompetitive inhibitor of MEK1/2, which has benn known as effective antineoplastic drugs for several malignant tumors. We hypothesized that Selumetinib might be potential drug for TNBC and explore the mechanism. METHODS: After treated with Selumetinib, the viability and mobility of HCC1937 and MDA-MB-231 were detected by MTT, tunnel, wound-healing assay, transwell assay and FCM methods. MiR array was used to analysis the change of miRs. We predicted and verified CUL1 is the target of miR-302a using Luciferase reporter assay. We also silenced the CUL1 by siRNA, to clarify whether CUL1 take part in the cell proliferation, migration and regulated its substrate TIMP1 and TRAF2. Moreover, after transfection, the antagomir of miR-302a and CUL1 over-expressed plasmid into HCC1937 and MDA-MB-231 cell accompanied with the Selumetinib treatment, we detected the proliferation and migration again. RESULTS: Selumetinib reduce the proliferation, migration, triggered apoptosis and G1 arrest in TNBC cell lines. In this process, the miR-302a was up-regulated and inhibited the CUL1 expression. The later negatively regulated the TIMP1 and TRAF2. As soon as we knockdown miR-302a and over-expression CUL1 in TNBC cells, the cytotoxicity of Selumetinib was reversed. CONCLUSIONS: MiR-302a targeted regulated the CUL1 expression and mediated the Selumetinib-induced cytotoxicity of triple-negative breast cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Benzimidazóis/farmacologia , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Análise por Conglomerados , Proteínas Culina/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , MicroRNAs/genética , Interferência de RNA , Transcriptoma , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
2.
Onco Targets Ther ; 9: 3085-94, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27307749

RESUMO

Luteolin is a falvonoid compound derived from Lonicera japonica Thunb. Numerous reports have demonstrated that luteolin has anticancer effects on many kinds of tumors. This study investigated the effects of luteolin on prostate cancer (PCa), assessing the PC3 and LNCaP cells. The cell viability and apoptosis were assessed by performing Cell Counting Kit-8 assay and Annexin V-fluorescein isothiocyanate/propidium iodide double staining. Luteolin was found to inhibit androgen-sensitive and androgen-independent PCa cell lines' growth and induced apoptosis. To uncover the exact mechanisms and molecular targets, microRNA (miR) array analysis was performed. miR-301 was found to be markedly downregulated. Then, the expression of miR-301 was retrospectively analyzed in the primary PCa tissues by quantitative reverse transcription polymerase chain reaction and in situ hybridization methods. According to the quantitative reverse transcription polymerase chain reaction results of miR-301, the 54 PCa patients were divided into two groups: high and low miR-301 groups. The division indicator is a relative expression ≥5. Compared to the low-expression group, high miR-301 expression was associated with a significantly shorter overall survival (P=0.029). The proapoptotic gene, DEDD2, was predicted to be the direct target of miR-301. It was clarified in accordance with bioinformatics and luciferase activity analyses. The overexpression of miR-301 by plasmid decreased the luteolin effect. Taken together, these results suggest that luteolin inhibits PCa cell proliferation through miR-301, the poor predictive factor of PCa.

3.
Acta Pharmacol Sin ; 37(4): 519-29, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26924291

RESUMO

AIM: Multi-drug resistance poses a critical bottleneck in chemotherapy. Given the up-regulation of mTOR pathway in many chemoresistant cancers, we examined whether sirolimus (rapamycin), a first generation mTOR inhibitor, might induce human osteosarcoma (OS) cell apoptosis and increase the sensitivity of OS cells to anticancer drugs in vitro. METHODS: Human OS cell line MG63/ADM was treated with sirolimus alone or in combination with doxorubicin (ADM), gemcitabine (GEM) or methotrexate (MTX). Cell proliferation and apoptosis were detected using CCK-8 assay and flow cytometry, respectively. MiRNAs in the cells were analyzed with miRNA microarray. The targets of miR-34b were determined based on TargetScan analysis and luciferase reporter assays. The expression of relevant mRNA and proteins was measured using qRT-PCR and Western blotting. MiR-34, PAK1 and ABCB1 levels in 40 tissue samples of OS patients were analyzed using qRT-PCR and in situ hybridization assays. RESULTS: Sirolimus (1-100 nmol/L) dose-dependently suppressed the cell proliferation (IC50=23.97 nmol/L) and induced apoptosis. Sirolimus (10 nmol/L) significantly sensitized the cells to anticancer drugs, leading to decreased IC50 values of ADM, GEM and MTX (from 25.48, 621.41 and 21.72 µmol/L to 4.93, 73.92 and 6.77 µmol/L, respectively). Treatment of with sirolimus increased miR-34b levels by a factor of 7.5 in the cells. Upregulation of miR-34b also induced apoptosis and increased the sensitivity of the cells to the anticancer drugs, whereas transfection with miR-34b-AMO, an inhibitor of miR-34b, reversed the anti-proliferation effect of sirolimus. Two key regulators of cell cycle, apoptosis and multiple drug resistance, PAK1 and ABCB1, were demonstrated to be the direct targets of miR-34b. In 40 tissue samples of OS patients, significantly higher miR-34 ISH score and lower PAK5 and ABCB1 scores were detected in the chemo-sensitive group. CONCLUSION: Sirolimus increases the sensitivity of human OS cells to anticancer drugs in vitro by up-regulating miR-34b interacting with PAK1 and ABCB1. A low miR-34 level is an indicator of poor prognosis in OS patients.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , MicroRNAs/metabolismo , Osteossarcoma/tratamento farmacológico , Sirolimo/farmacologia , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Células HEK293 , Humanos , Metotrexato/farmacologia , MicroRNAs/genética , Gencitabina
4.
PLoS One ; 10(8): e0136374, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26305693

RESUMO

BACKGROUND: Recent studies have shown that the forkhead box P3 (FOXP3) protein has a prognostic role in breast cancer. However, these results are controversial. Therefore, the aim of this meta-analysis was to clarify the prognostic role of FOXP3 expression in operable breast cancer cases. METHODS: Eligible studies describing the use of FOXP3 as a prognostic factor for operable breast cancer cases were identified. Clinicopathological features, disease-free survival (DFS), and overall survival (OS) data were collected from these studies and were analyzed using Stata software. RESULTS: A total of 16 articles containing data from 13,217 breast cancer patients met the inclusion criteria established for this study. The subsequent meta-analysis that was performed showed that high levels of FOXP3 are not significantly associated with DFS and OS with significant heterogeneity. An additional subgroup analysis demonstrated that intratumoral FOXP3+ regulatory T cells (Tregs) were positively correlated with adverse clinicopathological parameters, yet they did not show an association with DFS or OS. For tumor cells, the pooled results revealed that FOXP3 is significantly associated with DFS (HR: 2.55, 95% CI: 1.23-5.30) but is not associated with clinicopathological parameters or OS. We also observed a significant correlation between FOXP3 expression and survival in the estrogen receptor-positive (ER)+ subgroup (HR: 1.83, 95% CI: 1.36-2.47 for DFS, HR: 1.87, 95% CI 1.28-2.73 for OS), in the Asian region (HR: 1.98, 95% CI: 1.56-2.50 for DFS, HR: 1.93, 95% CI: 1.12-3.35 for OS) and using the median as the FOXP3-positive cut-off value (HR: 1.94, 95% CI: 1.57-2.39 for DFS, HR: 2.06; 95% CI: 1.36-3.11 for OS). CONCLUSION: This meta-analysis indicates that a prognostic role for FOXP3 expression in operable breast cancer cases depends on the FOXP3-positive region, ER status, geographic region and the FOXP3-positive cut-off value.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/cirurgia , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias da Mama/patologia , Intervalo Livre de Doença , Feminino , Fatores de Transcrição Forkhead/metabolismo , Humanos , Prognóstico , Viés de Publicação , Receptores de Estrogênio/metabolismo
5.
Cell Biol Int ; 38(12): 1394-402, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25052921

RESUMO

p21-activated kinase 7 (PAK7), also named as PAK5, is a member of Rac/Cdc42-associated Ser/Thr protein kinases. It is overexpressed in some types of cancer such as colorectal and pancreatic cancers. However, the expression status and biological function of PAK7 in osteosarcoma are still ambiguous. To evaluate the expression levels of PAK7 in osteosarcoma tissues and cell lines, immunohistochemistry was used. To investigate the role of PAK7 in cell proliferation, apoptosis and tumorigenicity in vitro and vivo, a recombinant lentivirus expressing PAK7 short hairpin RNA (Lv-shPAK7) was developed and transfected into Saos-2 cells. The silencing effect of PAK7 was confirmed by quantitative real-time PCR (qRT-PCR) and Western blot technique. PAK7 was overexpressed in osteosarcoma tissue and cell line. By knocking-down of PAK7, the proliferation and colony formation of Saos-2 cells were inhibited and apoptosis enhanced significantly. The in vivo tumorigenic ability in xenograft model of Saos-2 cells was also notably inhibited when PAK7 was knocked down. Our results imply that PAK7 promotes cell proliferation and tumorigenesis and may be an attractive candidate for the therapeutic target of osteosarcoma.


Assuntos
Neoplasias Ósseas/genética , Transformação Celular Neoplásica/genética , Osteossarcoma/genética , Quinases Ativadas por p21/genética , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Técnicas de Silenciamento de Genes/métodos , Humanos , Reação em Cadeia da Polimerase em Tempo Real
6.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 18(4): 927-30, 2010 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-20723302

RESUMO

Jagged-1 protein is one of the ligands belonging to Notch signaling pathway. Notch signaling pathway is one of the major signaling pathways mediated by contact between cells and plays an important role to regulate the process of proliferation and differentiation of hematopoietic cells in the hematopoietic microenvironment. To study the biological effect after the combination of receptor and ligand in Notch signaling pathway and the mechanism of Notch signaling pathway in bone marrow stromal cells mediated-drug resistance, a NIH-3T3 cell line over-expressing Jagged-1 protein was constructed for further research purposes. A full coding region of Jagged-1 gene was cloned and inserted into eukaryotic expression plasmid to construct pEGFP-IRES2-Jagged-1 eukaryotic expression vector, then transfected into NIH-3T3 cell line, a mammalian cells. As a result Western blot analysis confirmed that the transfectant NIH-3T3 cells highly expressed Jagged-1 protein and flow cytometry analysis confirmed that the NIH-3T3-pEGFP-IRES2-Jagged-1 cell line over-expressed Jagged-1 protein was monoclonal after screened by selective medium and limiting dilution analysis. It is concluded that the pEGFP-IRES2-Jagged-1 eukaryotic expression vector and a stable transfectant monoclonal NIH-3T3 cell line are successfully established. The construction of the stable transfectant monoclonal NIH-3T3 cell line which overexpressed Jagged-1 protein, provides the conditions to further study the mechanism of the bone marrow stromal cell-mediated drug resistance and to discover the new drug targets.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana/genética , Células NIH 3T3 , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Vetores Genéticos , Humanos , Proteína Jagged-1 , Ligantes , Camundongos , Plasmídeos , Proteínas Serrate-Jagged , Transfecção
7.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 17(5): 1380-3, 2009 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-19840488

RESUMO

Notch signaling pathway is a main pathway through cell-cell interactions, which regulates the programmed cell death, cellular proliferation and differentiation in multiple cell systems, and also is an important signaling pathway to modulate the balance between proliferation and differentiation in hematopoietic environment, and is related with the incidence of multiple hematologic malignancies. Multiple myeloma (MM) is malignant in B cell lineage and characterized by clonal proliferative plasma cells. It is very difficult to cure MM patients with a low proliferation rate of the MM cell and drug resistance to the standard dosage of chemotherapy. In recent years, research has shown that in the malignant plasma cells of the patients with multiple myeloma (MM) and the cell lines, but not in normal plasma cells or tumor cells from patients with other malignancies, the Notch ligand Jagged2 was found to be overexpressed. Jagged2 can induce stromal cells to secrete IL-6, VEGF and IGF-1. Notch activation can interact with NF-kappaB and C-myc to promote the proliferation and to inhibit the apoptosis of MM cells, showing in the relationship between the incidence of myeloma and drug resistance. Inhibition of the Notch signaling pathway may induce the apoptosis of MM cells and enhance the effect of chemotherapy. Study indicated that the specific inhibition of Notch signaling by treatment with a gamma-secretase inhibitor (GSI) alone, a specific pharmacologic inhibitor of Notch signaling, induces the apoptosis of myeloma cells and improves sensitivity of myeloma cell to chemotherapy when combined. In this article the composition of Notch signalling pathway, the mechanism of Notch signalling pathway and the relation of Notch signalling pathway to multiple myeloma were reviewed.


Assuntos
Mieloma Múltiplo/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA