Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Stem Cell Rev Rep ; 20(3): 797-815, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316679

RESUMO

Stem cell-based therapy is a potential alternative strategy for brain repair, with neural stem cells (NSC) presenting as the most promising candidates. Obtaining sufficient quantities of NSC for clinical applications is challenging, therefore alternative cell types, such as neural crest-derived dental pulp stem cells (DPSC), may be considered. Human DPSC possess neurogenic potential, exerting positive effects in the damaged brain through paracrine effects. However, a method for conversion of DPSC into NSC has yet to be developed. Here, overexpression of octamer-binding transcription factor 4 (OCT4) in combination with neural inductive conditions was used to reprogram human DPSC along the neural lineage. The reprogrammed DPSC demonstrated a neuronal-like phenotype, with increased expression levels of neural markers, limited capacity for sphere formation, and enhanced neuronal but not glial differentiation. Transcriptomic analysis further highlighted the expression of genes associated with neural and neuronal functions. In vivo analysis using a developmental avian model showed that implanted DPSC survived in the developing central nervous system and respond to endogenous signals, displaying neuronal phenotypes. Therefore, OCT4 enhances the neural potential of DPSC, which exhibited characteristics aligning with neuronal progenitors. This method can be used to standardise DPSC neural induction and provide an alternative source of neural cell types.


Assuntos
Polpa Dentária , Células-Tronco , Humanos , Diferenciação Celular , Fator de Transcrição 4/metabolismo , Neurogênese
2.
PLoS Biol ; 21(4): e3002066, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37053271

RESUMO

With emerging resistance to frontline treatments, it is vital that new antimalarial drugs are identified to target Plasmodium falciparum. We have recently described a compound, MMV020291, as a specific inhibitor of red blood cell (RBC) invasion, and have generated analogues with improved potency. Here, we generated resistance to MMV020291 and performed whole genome sequencing of 3 MMV020291-resistant populations. This revealed 3 nonsynonymous single nucleotide polymorphisms in 2 genes; 2 in profilin (N154Y, K124N) and a third one in actin-1 (M356L). Using CRISPR-Cas9, we engineered these mutations into wild-type parasites, which rendered them resistant to MMV020291. We demonstrate that MMV020291 reduces actin polymerisation that is required by the merozoite stage parasites to invade RBCs. Additionally, the series inhibits the actin-1-dependent process of apicoplast segregation, leading to a delayed death phenotype. In vitro cosedimentation experiments using recombinant P. falciparum proteins indicate that potent MMV020291 analogues disrupt the formation of filamentous actin in the presence of profilin. Altogether, this study identifies the first compound series interfering with the actin-1/profilin interaction in P. falciparum and paves the way for future antimalarial development against the highly dynamic process of actin polymerisation.


Assuntos
Antimaláricos , Malária Falciparum , Humanos , Plasmodium falciparum/metabolismo , Actinas/genética , Actinas/metabolismo , Profilinas/genética , Profilinas/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Malária Falciparum/tratamento farmacológico , Malária Falciparum/prevenção & controle , Malária Falciparum/genética , Eritrócitos/parasitologia , Antimaláricos/farmacologia
3.
Bioorg Chem ; 117: 105359, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34689083

RESUMO

Malaria is a devastating disease caused by Plasmodium parasites. Emerging resistance against current antimalarial therapeutics has engendered the need to develop antimalarials with novel structural classes. We recently described the identification and initial optimization of the 2-anilino quinazoline antimalarial class. Here, we refine the physicochemical properties of this antimalarial class with the aim to improve aqueous solubility and metabolism and to reduce adverse promiscuity. We show the physicochemical properties of this class are intricately balanced with asexual parasite activity and human cell cytotoxicity. Structural modifications we have implemented improved LipE, aqueous solubility and in vitro metabolism while preserving fast acting P. falciparum asexual stage activity. The lead compounds demonstrated equipotent activity against P. knowlesi parasites and were not predisposed to resistance mechanisms of clinically used antimalarials. The optimized compounds exhibited modest activity against early-stage gametocytes, but no activity against pre-erythrocytic liver parasites. Confoundingly, the refined physicochemical properties installed in the compounds did not engender improved oral efficacy in a P. berghei mouse model of malaria compared to earlier studies on the 2-anilino quinazoline class. This study provides the framework for further development of this antimalarial class.


Assuntos
Compostos de Anilina/química , Compostos de Anilina/farmacologia , Antimaláricos/química , Antimaláricos/farmacologia , Malária/tratamento farmacológico , Plasmodium/efeitos dos fármacos , Quinazolinas/química , Quinazolinas/farmacologia , Aminação , Compostos de Anilina/uso terapêutico , Animais , Antimaláricos/uso terapêutico , Feminino , Humanos , Malária/parasitologia , Camundongos , Plasmodium/fisiologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/fisiologia , Quinazolinas/uso terapêutico
4.
Bioorg Chem ; 115: 105244, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34452759

RESUMO

Malaria is a devastating parasitic disease caused by parasites from the genus Plasmodium. Therapeutic resistance has been reported against all clinically available antimalarials, threatening our ability to control the disease and therefore there is an ongoing need for the development of novel antimalarials. Towards this goal, we identified the 2-(N-phenyl carboxamide) triazolopyrimidine class from a high throughput screen of the Janssen Jumpstarter library against the asexual stages of the P. falciparum parasite. Here we describe the structure activity relationship of the identified class and the optimisation of asexual stage activity while maintaining selectivity against the human HepG2 cell line. The most potent analogues from this study were shown to exhibit equipotent activity against P. falciparum multidrug resistant strains and P. knowlesi asexual parasites. Asexual stage phenotyping studies determined the triazolopyrimidine class arrests parasites at the trophozoite stage, but it is likely these parasites are still metabolically active until the second asexual cycle, and thus have a moderate to slow onset of action. Non-NADPH dependent degradation of the central carboxamide and low aqueous solubility was observed in in vitro ADME profiling. A significant challenge remains to correct these liabilities for further advancement of the 2-(N-phenyl carboxamide) triazolopyrimidine scaffold as a potential moderate to slow acting partner in a curative or prophylactic antimalarial treatment.


Assuntos
Antimaláricos/farmacologia , Eritrócitos/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium knowlesi/efeitos dos fármacos , Purinas/farmacologia , Antimaláricos/síntese química , Antimaláricos/química , Relação Dose-Resposta a Droga , Eritrócitos/parasitologia , Humanos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Purinas/síntese química , Purinas/química , Relação Estrutura-Atividade
5.
Eur J Med Chem ; 214: 113253, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33610028

RESUMO

The emerging resistance to combination therapies comprised of artemisinin derivatives has driven a need to identify new antimalarials with novel mechanisms of action. Central to the survival and proliferation of the malaria parasite is the invasion of red blood cells by Plasmodium merozoites, providing an attractive target for novel therapeutics. A screen of the Medicines for Malaria Venture Pathogen Box employing transgenic P. falciparum parasites expressing the nanoluciferase bioluminescent reporter identified the phenylsulfonyl piperazine class as a specific inhibitor of erythrocyte invasion. Here, we describe the optimization and further characterization of the phenylsulfonyl piperazine class. During the optimization process we defined the functionality required for P. falciparum asexual stage activity and determined the alpha-carbonyl S-methyl isomer was important for antimalarial potency. The optimized compounds also possessed comparable activity against multidrug resistant strains of P. falciparum and displayed weak activity against sexual stage gametocytes. We determined that the optimized compounds blocked erythrocyte invasion consistent with the asexual activity observed and therefore the phenylsulfonyl piperazine analogues described could serve as useful tools for studying Plasmodium erythrocyte invasion.


Assuntos
Antimaláricos/farmacologia , Eritrócitos/efeitos dos fármacos , Malária Falciparum/tratamento farmacológico , Piperazinas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium knowlesi/efeitos dos fármacos , Animais , Antimaláricos/síntese química , Antimaláricos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Eritrócitos/parasitologia , Células Hep G2 , Humanos , Camundongos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Testes de Sensibilidade Parasitária , Piperazinas/síntese química , Piperazinas/química , Solubilidade , Relação Estrutura-Atividade
6.
Front Neurol ; 10: 422, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31110489

RESUMO

Stroke is a leading cause of permanent disability world-wide, but aside from rehabilitation, there is currently no clinically-proven pharmaceutical or biological agent to improve neurological disability. Cell-based therapies using stem cells, such as dental pulp stem cells, are a promising alternative for treatment of neurological diseases, including stroke. The ischaemic environment in stroke affects multiple cell populations, thus stem cells, which act through cellular and molecular mechanisms, are promising candidates. The most common stem cell population studied in the neurological setting has been mesenchymal stem cells due to their accessibility. However, it is believed that neural stem cells, the resident stem cell of the adult brain, would be most appropriate for brain repair. Using reprogramming strategies, alternative sources of neural stem and progenitor cells have been explored. We postulate that a cell of closer origin to the neural lineage would be a promising candidate for reprogramming and modification towards a neural stem or progenitor cell. One such candidate population is dental pulp stem cells, which reside in the root canal of teeth. This review will focus on the neural potential of dental pulp stem cells and their investigations in the stroke setting to date, and include an overview on the use of different sources of neural stem cells in preclinical studies and clinical trials of stroke.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA