Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(10): e31309, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38831820

RESUMO

In the study of photocatalytic and photoactivated processes and devices a tight control on the illumination conditions is mandatory. The practical challenges in the determination of the necessary photonic quantities pose serious difficulties in the characterization of catalytic performance and reactor designs and configurations, compromising an effective comparison between different experiments. To overcome these limitations, we have designed and constructed a new illumination system based in the concept of the integrating sphere (IS). The system provides uniform and isotropic illumination on the sample, either in batch or continuous flow modes, being these characteristics independent of the sample geometry. It allows direct, non-contact and real time determination of the photonic quantities as well as versatile control on the irradiance values and its spectral characteristics. It can be also scaled up to admit samples of different sizes without affecting its operational behaviour. The performance of the IS system has been determined in comparison with a second illumination system, mounted on an optical bench, that provides quasi-parallel beam (QPB) nearly uniform illumination in tightly controlled conditions. System performance is studied using three sample geometries: a standard quartz cuvette, a thin straight tube and a microreactor by means of potassium ferrioxalate actinometry. Results indicate that the illumination geometry and the angular distribution of the incoming light greatly affect the absorption at the sample. The sample light absorption efficiency can be obtained with statistical uncertainties of about 3% and in very good agreement with theoretical estimations.

2.
ChemSusChem ; 17(9): e202301591, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38179896

RESUMO

Molybdenum carbide supported on activated carbon (ß-Mo2C/AC) has been tested as catalyst in the reductive catalytic fractionation (RCF) of lignocellulosic biomass both in batch and in Flow-Through (FT) reaction systems. High phenolic monomer yields (34 wt.%) and selectivity to monomers with reduced side alkyl chains (up to 80 wt.%) could be achieved in batch in the presence of hydrogen. FT-RCF were made with no hydrogen feed, thus via transfer hydrogenation from ethanol. Similar selectivity could be attained in FT-RCF using high catalyst/biomass ratios (0.6) and high molybdenum loading (35 wt.%) in the catalyst, although selectivity decreased with lower catalyst/biomass ratios or molybdenum contents. Regardless of these parameters, high delignification of the lignocellulosic biomass and similar monomer yields were observed in the FT mode (13-15 wt.%) while preserving the holocellulose fractions in the delignified pulp. FT-RCF system outperforms the batch reaction mode in the absence of hydrogen, both in terms of activity and selectivity to reduced monomers that is attributed to the two-step non-equilibrium processes and the removal of diffusional limitations that occur in the FT mode. Even though some molybdenum leaching was detected, the catalytic performance could be maintained with negligible loss of activity or selectivity for 15 consecutive runs.

3.
Small ; 20(6): e2305169, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37797194

RESUMO

Bacterial infections are a public health threat of increasing concern in medical care systems; hence, the search for novel strategies to lower the use of antibiotics and their harmful effects becomes imperative. Herein, the antimicrobial performance of four polyoxometalate (POM)-stabilized gold nanoparticles (Au@POM) against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) as Gram-negative and Gram-positive bacteria models, respectively, is studied. The bactericidal studies performed, both in planktonic and sessile forms, evidence the antimicrobial potential of these hybrid nanostructures with selectivity toward Gram-negative species. In particular, the Au@GeMoTi composite with the novel [Ti2 (HGeMo7 O28 )2 ]10- POM capping ligand exhibits outstanding bactericidal efficiency with a minimum inhibitory concentration of just 3.12 µm for the E. coli strain, thus outperforming the other three Au@POM counterparts. GeMoTi represents the fourth example of a water-soluble TiIV -containing polyoxomolybdate, and among them, the first sandwich-type structure having heteroatoms in high-oxidation state. The evaluation of the bactericidal mechanisms of action points to the cell membrane hyperpolarization, disruption, and subsequent nucleotide leakage and the low cytotoxicity exerted on five different cell lines at antimicrobial doses demonstrates the antibiotic-like character. These studies highlight the successful design and development of a new POM-based nanomaterial able to eradicate Gram-negative bacteria without damaging mammalian cells.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Infecções Estafilocócicas , Animais , Ouro/química , Escherichia coli , Titânio/farmacologia , Staphylococcus aureus , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana , Mamíferos
4.
ACS Omega ; 8(40): 37610-37621, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37841159

RESUMO

Ecuador as an international leader in the production of cocoa beans produced more than 300 000 tons in 2021; hence, the management and valorization of the 2 MM tons of waste generated annually by this industry have a strategic and socioeconomic value. Consequently, appropriate technologies to avoid environmental problems and promote sustainable development and the bioeconomy, especially considering that this is a megadiverse country, are of the utmost relevance. For this reason, we explored a low-cost pyrolysis route for valorizing cocoa pod husks from Ecuador's Amazonian region, aiming at producing pyrolysis liquids (bio-oil), biochar, and gas as an alternative chemical source from cocoa residues in the absence of hydrogen. Downstream catalytic processing of hot pyrolysis vapors using Mo- and/or Ni-based catalysts and standalone γ-Al2O3 was applied for obtaining upgraded bio-oils in a laboratory-scale fixed bed reactor, at 500 °C in a N2 atmosphere. As a result, bimetallic catalysts increased the bio-oil aqueous phase yield by 6.6%, at the expense of the organic phase due to cracking reactions according to nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS) results. Overall product yield remained constant, in comparison to pyrolysis without any downstream catalytic treatment (bio-oil ∼39.0-40.0 wt % and permanent gases 24.6-26.6 wt %). Ex situ reduced and passivated MoNi/γ-Al2O3 led to the lowest organic phase and highest aqueous phase yields. The product distribution between the two liquid phases was also modified by the catalytic upgrading experiments carried out, according to heteronuclear single-quantum correlation (HSQC), total correlation spectroscopy (TOCSY), and NMR analyses. The detailed composition distribution reported here shows the chemical production potential of this residue and serves as a starting point for subsequent valorizing technologies and/or processes in the food and nonfood industry beneficiating society, environment, economy, and research.

5.
Biomolecules ; 12(4)2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35454128

RESUMO

Lignocellulosic residues have the potential for obtaining high value-added products that could be better valorized if biorefinery strategies are adopted. The debarking of short-rotation crops yields important amounts of residues that are currently underexploited as low-grade fuel and could be a renewable source of phenolic compounds and other important phytochemicals. The isolation of these compounds can be carried out by different methods, but for attaining an integral valorization of barks, a preliminary extraction step for phytochemicals should be included. Using optimized extraction methods based on Soxhlet extraction can be effective for the isolation of phenolic compounds with antioxidant properties. In this study, poplar bark (Populus Salicaceae) was used to obtain a series of extracts using five different solvents in a sequential extraction of 24 h each in a Soxhlet extractor. Selected solvents were put in contact with the bark sample raffinate following an increasing order of polarity: n-hexane, dichloromethane, ethyl acetate, methanol, and water. The oily residues of the extracts obtained after each extraction were further subjected to flash chromatography, and the fractions obtained were characterized by gas chromatography coupled with mass spectrometry (GC-MS). The total phenolic content (TPC) was determined using the Folin-Ciocalteu method, and the antioxidant activity (AOA) of the samples was evaluated in their reaction with the free radical 2,2-Diphenyl-picrylhydrazyl (DPPH method). Polar solvents allowed for higher individual extraction yields, with overall extraction yields at around 23% (dry, ash-free basis). Different compounds were identified, including hydrolyzable tannins, phenolic monomers such as catechol and vanillin, pentoses and hexoses, and other organic compounds such as long-chain alkanes, alcohols, and carboxylic acids, among others. An excellent correlation was found between TPC and antioxidant activity for the samples analyzed. The fractions obtained using methanol showed the highest phenolic content (608 µg of gallic acid equivalent (GAE)/mg) and the greatest antioxidant activity.


Assuntos
Populus , Salicaceae , Antioxidantes/química , Metanol/química , Fenóis/química , Compostos Fitoquímicos/química , Casca de Planta/química , Extratos Vegetais/química , Solventes/química
6.
ACS Sustain Chem Eng ; 10(9): 2868-2880, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35281211

RESUMO

The use of biomass for the production of energy and higher added value products is a topic of increasing interest in line with growing environmental concerns and circular economy. Mesoporous material Sn-In-MCM-41 was synthesized for the first time and used as a catalyst for the transformation of sugars to methyl lactate (ML). This catalyst was characterized in depth by various techniques and compared with Sn-MCM-41 and In-MCM-41 catalysts. In the new Sn-In-MCM-41 material, both metals, homogeneously distributed throughout the mesoporous structure of MCM-41, actuate in a cooperative way in the different steps of the reaction mechanism. As a result, yields to ML of 69.4 and 73.9% in the transformation of glucose and sucrose were respectively reached. In the case of glucose, the ML yield 1.5 and 2.6 times higher than those of Sn-MCM-41 and In-MCM-41 catalysts, respectively. The Sn-In-MCM-41 catalyst was reused in the transformation of glucose up to four cycles without significant loss of catalytic activity. Finally, life cycle assessment comparison between chemical and biochemical routes to produce ML allowed us to conclude that the use of Sn-In-MCM-41 reduces the environmental impacts compared to Sn-MCM-41. Nevertheless, to make the chemical route comparable to the biochemical one, improvements in the catalyst and ML synthesis have to be achieved.

7.
Nanomaterials (Basel) ; 11(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202517

RESUMO

In this work, the production of renewable hydrocarbons was explored by the means of waste cottonseed oil (WCSO) micropyrolysis at 500 °C. Catalytic upgrading of the pyrolysis vapors was studied using α-Al2O3, γ-Al2O3, Mo-Co/γ-Al2O3, and Mo-Ni/γ-Al2O3 catalysts. The oxygen removal efficiency was much lower in non-catalytic pyrolysis (18.0%), whilst γ-Al2O3 yielded a very high oxygen removal efficiency (91.8%), similar to that obtained with Mo-Co/γ-Al2O3 (92.8%) and higher than that attained with Mo-Ni/γ-Al2O3 (82.0%). Higher conversion yields into total renewable hydrocarbons were obtained with Mo-Co/γ-Al2O3 (61.9 wt.%) in comparison to Mo-Ni/γ-Al2O3 (46.6%). GC/MS analyses showed a relative chemical composition of 31.3, 86.4, and 92.6% of total renewable hydrocarbons and 58.7, 7.2, and 4.2% of oxygenated compounds for non-catalytic bio-oil (BOWCSO), BOMoNi and BOMoCo, respectively. The renewable hydrocarbons that were derived from BOMoNi and BOMoCo were mainly composed by olefins (35.3 and 33.4%), aromatics (31.4 and 28.9%), and paraffins (13.8 and 25.7%). The results revealed the catalysts' effectiveness in FFA decarbonylation and decarboxylation, as evidenced by significant changes in the van Krevelen space, with the lowest O/C ratio values for BOMoCo and BOMoNi (O/C = 0-0.10) in relation to the BOWCSO (O/C = 0.10-0.20), and by a decrease in the presence of oxygenated compounds in the catalytic bio-oils.

8.
Biomolecules ; 10(9)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962141

RESUMO

Lignocellulosic materials are promising alternatives to non-renewable fossil sources when producing aromatic compounds. Lignins from Populus salicaceae. Pinus radiata and Pinus pinaster from industrial wastes and biorefinery effluents were isolated and characterized. Lignin was depolymerized using homogenous (NaOH) and heterogeneous (Ni-, Cu- or Ni-Cu-hydrotalcites) base catalysis and catalytic hydrogenolysis using Ru/C. When homogeneous base catalyzed depolymerization (BCD) and Ru/C hydrogenolysis were combined on poplar lignin, the aromatics amount was ca. 11 wt.%. Monomer distributions changed depending on the feedstock and the reaction conditions. Aqueous NaOH produced cleavage of the alkyl side chain that was preserved when using modified hydrotalcite catalysts or Ru/C-catalyzed hydrogenolysis in ethanol. Depolymerization using hydrotalcite catalysts in ethanol produced monomers bearing carbonyl groups on the alkyl side chain. The analysis of the reaction mixtures was done by size exclusion chromatography (SEC) and diffusion ordered nuclear magnetic resonance spectroscopy (DOSY NMR). 31P NMR and heteronuclear single quantum coherence spectroscopy (HSQC) were also used in this study. The content in poly-(hydroxy)-aromatic ethers in the reaction mixtures decreased upon thermal treatments in ethanol. It was concluded that thermo-solvolysis is key in lignin depolymerization, and that the synergistic effect of Ni and Cu provided monomers with oxidized alkyl side chains.


Assuntos
Hidrocarbonetos Aromáticos/química , Lignina/química , Pinus/química , Populus/química , Catálise , Cromatografia em Gel/métodos , Cobre/química , Etanol/química , Hidrocarbonetos Aromáticos/metabolismo , Lignina/isolamento & purificação , Lignina/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Níquel/química , Polimerização , Temperatura , Água/química , Difração de Raios X/métodos
9.
ACS Appl Mater Interfaces ; 12(32): 36458-36467, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32646210

RESUMO

We present a simple, versatile, and low-cost approach for the preparation of surface-enhanced Raman spectroscopy (SERS)-active regions within a microfluidic channel 50 cm in length. The approach involves the UV-light-driven formation of polyoxometalate-decorated gold nanostructures, Au@POM (POM: H3PW12O40 (PW) and H3PMo12O40 (PMo)), that self-assemble in situ on the surface of the polydimethylsiloxane (PDMS) microchannels without any extra functionalization procedure. The fabricated LoCs were characterized by scanning electron microscopy (SEM), UV-vis, Raman, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) techniques. The SERS activity of the resulting Au@POM-coated lab-on-a-chip (LoC) devices was evaluated in both static and flow conditions using rhodamine R6G. The SERS response of Au@PW-based LoCs was found to be superior to Au@PMo counterparts and outstanding when compared to reported data on metal@POM nanocomposites. We demonstrate the potentialities of both Au@POM-coated LoCs as analytical platforms for real-time detection of the organophosphorous pesticide paraoxon-methyl at 10-6 M concentration level.

10.
J Environ Manage ; 265: 110510, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32275240

RESUMO

Valorization of Fruit and Vegetable Wastes (FVW) is challenging owing to logistic-related problems, as well as to their perishable nature and heterogeneity, among other factors. In this work, the main existing routes for food waste valorization are critically reviewed. The study focuses on FVW because they constitute an important potential source for valuable natural products and chemicals. It can be concluded that FVW management can be carried out following different processing routes, though nowadays the best solution is to find an adequate balance between conventional waste management methods and some emerging valorization technologies. Presently, both conventional and emerging technologies must be considered in a coordinated manner to enable an integral management of FVW. By doing so, impacts on food safety and on the environment can be minimized whilst wasting of natural resources is avoided. Depending on the characteristics of FVW and on the existing market demand, the most relevant valorization options are extraction of bioactive compounds, production of enzymes and exopolysaccharides, synthesis of bioplastics and biopolymers and production of biofuels. The most efficient emergent processing technologies must be promoted in the long term, in detriment of the conventional ones used nowadays. In consequence, future integral valorization of FVW will probably comprise two stages: direct processing of FVW into value-added products, followed by processing of the residual streams, byproducts and leftover matter by means of conventional waste management technologies.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Biocombustíveis , Frutas , Verduras
11.
Food Res Int ; 105: 628-636, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29433256

RESUMO

Stomata in leaves regulate gas interchange and transpiration in the grapevine and through these pores both the penetration of aqueous solutions with nutrients as well as the excretion of products take place. The aim of this work was to study the influence of spraying the vineyard with toasted and untoasted oak extracts on the volatile composition and on the organoleptic quality of wine made from Garnacha grapes. The results were compared with a Garnacha control wine obtained with grapes sprayed with distilled water. The absorption of the compounds from the oak wood extracts was irregular and some of these compounds were modified by the yeast during fermentation so as to prevent fermentation problems. This was observed particularly in the case of furfural which were transformed into furfuryl alcohol by yeast in order to avoid irreversible cellular damage. On applying a discriminant analysis to the concentration of volatile compounds in the wines, the three treatments (control, toasted and untoasted oak extracts) were differentiate. The wine obtained from grapes treated with toasted oak extract showed a more intense wood aroma after 18months of bottle aging than the other wines. Likewise, spicy aromas were found to be more intense in the samples treated with some type of oak wood extracts.


Assuntos
Produção Agrícola/métodos , Frutas/metabolismo , Odorantes/análise , Extratos Vegetais/isolamento & purificação , Folhas de Planta/metabolismo , Quercus/química , Olfato , Vitis/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Vinho/análise , Madeira/química , Absorção Fisico-Química , Aerossóis , Feminino , Fermentação , Frutas/crescimento & desenvolvimento , Frutas/microbiologia , Humanos , Masculino , Percepção Olfatória , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Fatores de Tempo , Vitis/crescimento & desenvolvimento , Vitis/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA