RESUMO
Esophageal tuberculosis (TB) is a rare manifestation of extrapulmonary TB, accounting for <0.2% of all TB cases. Esophageal TB most commonly presents with dysphagia, odynophagia, retrosternal pain, and systemic symptoms like decreased appetite, loss of weight, and low-grade fever as associated or other presentations. We report a similar case recently encountered as an elderly male patient presented with chronic dysphagia to solids, loss of appetite, and significant loss of weight. Radiological and endoscopy pictures looked like esophageal cancer with histopathological examination (twice) negative for the same. Diagnosis of esophageal TB was confirmed by GeneXpert Ultra of biopsy sample and histopathological examination was suggestive of granulomatous esophagitis. The patient improved on 6 months antitubercular therapy. The unique aspect of this case was how the lesion mimicked an esophageal carcinoma on imaging which posed a diagnostic challenge.
Assuntos
Antituberculosos , Humanos , Masculino , Antituberculosos/uso terapêutico , Tuberculose Gastrointestinal/diagnóstico , Tuberculose Gastrointestinal/tratamento farmacológico , Diagnóstico Diferencial , Idoso , Transtornos de Deglutição/etiologia , Neoplasias Esofágicas/diagnóstico , Doenças do Esôfago/diagnósticoRESUMO
BACKGROUND/AIMS: Patients of ulcerative colitis (UC) on follow-up are routinely evaluated by sigmoidoscopy. There is no prospective literature to support this practice. We assessed agreement between sigmoidoscopy and colonoscopy prospectively in patients with disease extent beyond the sigmoid colon. METHODS: We conducted a prospective observational study at a tertiary care institute for agreement between sigmoidoscopy and colonoscopy. We assessed endoscopic activity using the Mayo Endoscopic Score (MES) and Ulcerative Colitis Endoscopic Index of Severity (UCEIS) and histological activity using the Nancy Index (NI), Robarts Histopathology Index (RHI), and Simplified Geboes Score (SGS). RESULTS: Sigmoidoscopy showed a strong agreement with colonoscopy for MES and UCEIS with a kappa (κ) of 0.96 and 0.94 respectively. The misclassification rate for MES and UCEIS was 3% and 5% respectively. Sigmoidoscopy showed perfect agreement (κ = 1.00) with colonoscopy for assessment of the presence of endoscopic activity in the colon using MES ≥ 1 as activity criteria and strong agreement (κ = 0.93) using MES > 1 as activity criteria. Sigmoidoscopy showed strong agreement with colonoscopy for assessment of the presence of endoscopic activity using UCEIS (κ = 0.92). Strong agreement was observed between sigmoidoscopy and colonoscopy using NI (κ = 0.86), RHI (κ = 1.00), and SGS (κ = 0.92) for the detection of histological activity. The misclassification rate for the detection of histological activity was 2%, 0%, and 1% for NI, RHI, and SGS respectively. CONCLUSIONS: Sigmoidoscopy showed strong agreement with colonoscopy for endoscopic and histologic disease activity. Sigmoidoscopy is adequate for assessment of disease activity in patients with UC during follow-up evaluation.
RESUMO
Psoralea corylifolia Linn (Bakuchi or Babchi), commonly known as purple fleabane, is a popular herb used in Ayurvedic traditional medicine. Its seeds, called Fructus Psoraleae, are traditionally used for treating leprosy, vitiligo, and psoriasis in the absence of empirical evidence. We report the first case of acute on chronic liver failure (ACLF) caused by Bakuchi, a well-documented hepatotoxic agent, in a middle-aged female. Her liver function deteriorated progressively which prompted us to go for a liver biopsy which was consistent with diagnosis of herb-induced liver injury after excluding all competing causes. Fortunately, the patient improved gradually after herb withdrawal and supportive care. Patients with underlying chronic liver disease (CLD) should be aware of risks in using untested herbal formulations. This case emphasizes the need for increased surveillance to formulate guidelines regarding the regulation and informed use of herbal supplements in patients with chronic liver disease.
RESUMO
Distributed structure health monitoring has been a hot research topic in recent years, and optic fiber sensors are largely developed for the advantages of high sensitivity, better spatial resolution, and small sensor size. However, the limitation of fibers in installation and reliability has become one of the major drawbacks of this technology. This paper presents a fiber optic sensing textile and a new installation method inside bridge girders to address those shortcomings in fiber sensing systems. The sensing textile was utilized to monitor strain distribution in the Grist Mill Bridge located in Maine based on Brillouin Optical Time Domain Analysis (BOTDA). A modified slider was developed to increase the efficiency of installation in the confined bridge girders. The bridge girder's strain response was successfully recorded by the sensing textile during the loading tests that involved four trucks on the bridge. The sensing textile demonstrated the capability to differentiate separated loading locations. These results demonstrate a new way of installing fiber optic sensors and the potential applications of fiber optic sensing textiles in structural health monitoring.
RESUMO
Cyanometabolites are active compounds derived from cyanobacteria that include small low molecular weight peptides, oligosaccharides, lectins, phenols, fatty acids, and alkaloids. Some of these compounds may pose a threat to human and environment. However, majority of them are known to have various health benefits with antiviral properties against pathogenic viruses including Human immunodeficiency virus (HIV), Ebola virus (EBOV), Herpes simplex virus (HSV), Influenza A virus (IAV) etc. Cyanometabolites classified as lectins include scytovirin (SVN), Oscillatoria agardhii agglutinin (OAAH), cyanovirin-N (CV-N), Microcystis viridis lectin (MVL), and microvirin (MVN) also possess a potent antiviral activity against viral diseases with unique properties to recognize different viral epitopes. Studies showed that a small linear peptide, microginin FR1, isolated from a water bloom of Microcystis species, inhibits angiotensin-converting enzyme (ACE), making it useful for the treatment of coronavirus disease 2019 (COVID-19). Our review provides an overview of the antiviral properties of cyanobacteria from the late 90s till now and emphasizes the significance of their metabolites in combating viral diseases, particularly severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has received limited attention in previous publications. The enormous medicinal potential of cyanobacteria is also emphasized in this review, which justifies their use as a dietary supplement to fend off pandemics in future.
Assuntos
COVID-19 , Cianobactérias , Humanos , Antivirais/metabolismo , SARS-CoV-2/metabolismo , Lectinas , Cianobactérias/químicaRESUMO
PURPOSE: Pyruvate kinase M2 (PKM2) catalyzes the final step in glycolysis, a key process of cancer metabolism. PKM2 is preferentially expressed by glioblastoma (GBM) cells with minimal expression in healthy brain. We describe the development, validation, and translation of a novel PET tracer to study PKM2 in GBM. We evaluated 1-((2-fluoro-6-[18F]fluorophenyl)sulfonyl)-4-((4-methoxyphenyl)sulfonyl)piperazine ([18F]DASA-23) in cell culture, mouse models of GBM, healthy human volunteers, and patients with GBM. EXPERIMENTAL DESIGN: [18F]DASA-23 was synthesized with a molar activity of 100.47 ± 29.58 GBq/µmol and radiochemical purity >95%. We performed initial testing of [18F]DASA-23 in GBM cell culture and human GBM xenografts implanted orthotopically into mice. Next, we produced [18F]DASA-23 under FDA oversight, and evaluated it in healthy volunteers and a pilot cohort of patients with glioma. RESULTS: In mouse imaging studies, [18F]DASA-23 clearly delineated the U87 GBM from surrounding healthy brain tissue and had a tumor-to-brain ratio of 3.6 ± 0.5. In human volunteers, [18F]DASA-23 crossed the intact blood-brain barrier and was rapidly cleared. In patients with GBM, [18F]DASA-23 successfully outlined tumors visible on contrast-enhanced MRI. The uptake of [18F]DASA-23 was markedly elevated in GBMs compared with normal brain, and it identified a metabolic nonresponder within 1 week of treatment initiation. CONCLUSIONS: We developed and translated [18F]DASA-23 as a new tracer that demonstrated the visualization of aberrantly expressed PKM2 for the first time in human subjects. These results warrant further clinical evaluation of [18F]DASA-23 to assess its utility for imaging therapy-induced normalization of aberrant cancer metabolism.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Neoplasias Encefálicas/patologia , Compostos de Diazônio , Glioblastoma/patologia , Glicólise , Humanos , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Piruvato Quinase/metabolismo , Ácidos SulfanílicosRESUMO
More widespread use of positron emission tomography (PET) imaging is limited by its high cost and radiation dose. Reductions in PET scan time or radiotracer dosage typically degrade diagnostic image quality (DIQ). Deep-learning-based reconstruction may improve DIQ, but such methods have not been clinically evaluated in a realistic multicenter, multivendor environment. In this study, we evaluated the performance and generalizability of a deep-learning-based image-quality enhancement algorithm applied to fourfold reduced-count whole-body PET in a realistic clinical oncologic imaging environment with multiple blinded readers, institutions, and scanner types. We demonstrate that the low-count-enhanced scans were noninferior to the standard scans in DIQ (p < 0.05) and overall diagnostic confidence (p < 0.001) independent of the underlying PET scanner used. Lesion detection for the low-count-enhanced scans had a high patient-level sensitivity of 0.94 (0.83-0.99) and specificity of 0.98 (0.95-0.99). Interscan kappa agreement of 0.85 was comparable to intrareader (0.88) and pairwise inter-reader agreements (maximum of 0.72). SUV quantification was comparable in the reference regions and lesions (lowest p-value=0.59) and had high correlation (lowest CCC = 0.94). Thus, we demonstrated that deep learning can be used to restore diagnostic image quality and maintain SUV accuracy for fourfold reduced-count PET scans, with interscan variations in lesion depiction, lower than intra- and interreader variations. This method generalized to an external validation set of clinical patients from multiple institutions and scanner types. Overall, this method may enable either dose or exam-duration reduction, increasing safety and lowering the cost of PET imaging.
RESUMO
PURPOSE: While sampled or short-frame realizations have shown the potential power of deep learning to reduce radiation dose for PET images, evidence in true injected ultra-low-dose cases is lacking. Therefore, we evaluated deep learning enhancement using a significantly reduced injected radiotracer protocol for amyloid PET/MRI. METHODS: Eighteen participants underwent two separate 18F-florbetaben PET/MRI studies in which an ultra-low-dose (6.64 ± 3.57 MBq, 2.2 ± 1.3% of standard) or a standard-dose (300 ± 14 MBq) was injected. The PET counts from the standard-dose list-mode data were also undersampled to approximate an ultra-low-dose session. A pre-trained convolutional neural network was fine-tuned using MR images and either the injected or sampled ultra-low-dose PET as inputs. Image quality of the enhanced images was evaluated using three metrics (peak signal-to-noise ratio, structural similarity, and root mean square error), as well as the coefficient of variation (CV) for regional standard uptake value ratios (SUVRs). Mean cerebral uptake was correlated across image types to assess the validity of the sampled realizations. To judge clinical performance, four trained readers scored image quality on a five-point scale (using 15% non-inferiority limits for proportion of studies rated 3 or better) and classified cases into amyloid-positive and negative studies. RESULTS: The deep learning-enhanced PET images showed marked improvement on all quality metrics compared with the low-dose images as well as having generally similar regional CVs as the standard-dose. All enhanced images were non-inferior to their standard-dose counterparts. Accuracy for amyloid status was high (97.2% and 91.7% for images enhanced from injected and sampled ultra-low-dose data, respectively) which was similar to intra-reader reproducibility of standard-dose images (98.6%). CONCLUSION: Deep learning methods can synthesize diagnostic-quality PET images from ultra-low injected dose simultaneous PET/MRI data, demonstrating the general validity of sampled realizations and the potential to reduce dose significantly for amyloid imaging.
Assuntos
Aprendizado Profundo , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios XRESUMO
We reveal the potential of bound states in the continuum (BIC) to enhance the nonlinear response in specialty optical resonators in the presence of gain and loss. We demonstrate this phenomenon in a square core-shell AlGaAs nanowire having a proper engineered spatial variation of gain and loss to sustain quasi-BICs. The presence of these high-quality modes at both fundamental and second-harmonic wavelengths leads to an extremely high enhancement in second harmonic generation, thus preluding a framework to fabricate composite media with high effective nonlinearity.
RESUMO
The dynamical parametric encirclement around a second-order exceptional point (EP) enables the time-asymmetric nonadiabatic evolution of light, which follows the chirality of the underlying system. Such light dynamics in the presence of multiple EPs and the corresponding chiral aspect is yet to be explored. In this Letter, we report a gain-loss assisted four-mode-supported optical waveguide that hosts a parameter space to dynamically encircle multiple EPs. In the presence of multiple EPs, we establish a unique nonadiabatic behavior of light, where beyond the chiral aspect of the system, light is switched to a particular mode, irrespective of the choice of the input mode. Proposed scheme certainly opens a step-forward approach in light manipulation to facilitate next-generation integrated photonic systems.
RESUMO
PURPOSE: To assess the safety, biodistribution, and radiation dosimetry of the novel positron emission tomography (PET) radiopharmaceutical 1-((2-fluoro-6-[[18F]]fluorophenyl)sulfonyl)-4-((4-methoxyphenyl)sulfonyl)piperazine ([18F]DASA-23) in healthy volunteers. METHODS: We recruited 5 healthy volunteers who provided a written informed consent. Volunteers were injected with 295.0 ± 8.2 MBq of [18F]DASA-23 intravenously. Immediately following injection, a dynamic scan of the brain was acquired for 15 min. This was followed by serial whole-body PET/MRI scans acquired up to 3 h post-injection. Blood samples were collected at regular intervals, and vital signs monitored pre- and post-radiotracer administration. Regions of interest were drawn around multiple organs, time-activity curves were calculated, and organ uptake and dosimetry were estimated with OLINDA/EXM (version 1.1) software. RESULTS: All subjects tolerated the PET/MRI examination, without adverse reactions to [18F]DASA-23. [18F]DASA-23 passively crossed the blood-brain barrier, followed by rapid clearance from the brain. High accumulation of [18F]DASA-23 was noted in organs such as the gallbladder, liver, small intestine, and urinary bladder, suggesting hepatobiliary and urinary clearance. The effective dose of [18F]DASA-23 was 23.5 ± 5.8 µSv/MBq. CONCLUSION: We successfully completed a pilot first-in-human study of [18F]DASA-23. Our results indicate that [18F]DASA-23 can be used safely in humans to evaluate pyruvate kinase M2 levels. Ongoing studies are evaluating the ability of [18F]DASA-23 to visualize intracranial malignancies, NCT03539731. TRIAL REGISTRATION: ClinicalTrials.gov , NCT03539731 (registered 28 May 2018).
Assuntos
Tomografia por Emissão de Pósitrons , Piruvato Quinase , Compostos de Diazônio , Humanos , Piruvato Quinase/metabolismo , Radiometria , Ácidos Sulfanílicos , Distribuição TecidualRESUMO
BACKGROUND: H215 O-positron emission tomography (PET) is considered the reference standard for absolute cerebral blood flow (CBF). However, this technique requires an arterial input function measured through continuous sampling of arterial blood, which is invasive and has limitations with tracer delay and dispersion. PURPOSE: To demonstrate a new noninvasive method to quantify absolute CBF with a PET/MRI hybrid scanner. This blood-free approach, called PC-PET, takes the spatial CBF distribution from a static H215 O-PET scan, and scales it to the whole-brain average CBF value measured by simultaneous phase-contrast MRI. STUDY TYPE: Observational. SUBJECTS: Twelve healthy controls (HC) and 13 patients with Moyamoya disease (MM) as a model of chronic ischemic disease. FIELD STRENGTH/SEQUENCES: 3T/2D cardiac-gated phase-contrast MRI and H215 O-PET. ASSESSMENT: PC-PET CBF values from whole brain (WB), gray matter (GM), and white matter (WM) in HCs were compared with literature values since 2000. CBF and cerebrovascular reactivity (CVR), which is defined as the percent CBF change between baseline and post-acetazolamide (vasodilator) scans, were measured by PC-PET in MM patients and HCs within cortical regions corresponding to major vascular territories. Statistical Tests: Linear, mixed effects models were created to compare CBF and CVR, respectively, between patients and controls, and between different degrees of stenosis. RESULTS: The mean CBF values in WB, GM, and WM in HC were 42 ± 7 ml/100 g/min, 50 ± 7 ml/100 g/min, and 23 ± 3 ml/100 g/min, respectively, which agree well with literature values. Compared with normal regions (57 ± 23%), patients showed significantly decreased CVR in areas with mild/moderate stenosis (47 ± 17%, P = 0.011) and in severe/occluded areas (40 ± 16%, P = 0.016). Data Conclusion: PC-PET identifies differences in cerebrovascular reactivity between healthy controls and cerebrovascular patients. PC-PET is suitable for CBF measurement when arterial blood sampling is not accessible, and warrants comparison to fully quantitative H215 O-PET in future studies. LEVEL OF EVIDENCE: 3 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;51:183-194.
Assuntos
Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética/métodos , Doença de Moyamoya/diagnóstico por imagem , Doença de Moyamoya/fisiopatologia , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons/métodos , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Feminino , Humanos , Masculino , Radioisótopos de OxigênioRESUMO
We study optical pulse propagation through a linear, dispersive, gain-loss-assisted bulk medium whose refractive index is time-varying. To analyze the dynamics, we have used a novel technique of time transformation that provides universal formulas of pulse propagation. Our analytical and numerical investigations reveal that optical pulses show asymmetric behavior while propagating in opposite direction through such a medium, in both the temporal and spectral domains. Moreover, the wavelength shift during this process is the most interesting outcome which is limited in range, but could be tuned by varying the refractive index with time. Phenomena that are observed in this Letter are novel and realizable in practical devices such as coupled waveguides where the refractive index is a function of time.
RESUMO
Background and Purpose- Noninvasive imaging of brain perfusion has the potential to elucidate pathophysiological mechanisms underlying Moyamoya disease and enable clinical imaging of cerebral blood flow (CBF) to select revascularization therapies for patients. We used hybrid positron emission tomography (PET)/magnetic resonance imaging (MRI) technology to characterize the distribution of hypoperfusion in Moyamoya disease and its relationship to vessel stenosis severity, through comparisons with a normative perfusion database of healthy controls. Methods- To image CBF, we acquired [15O]-water PET as a reference and simultaneously acquired arterial spin labeling (ASL) MRI scans in 20 Moyamoya patients and 15 age-matched, healthy controls on a PET/MRI scanner. The ASL MRI scans included a standard single-delay ASL scan with postlabel delay of 2.0 s and a multidelay scan with 5 postlabel delays (0.7-3.0s) to estimate and account for arterial transit time in CBF quantification. The percent volume of hypoperfusion in patients (determined as the fifth percentile of CBF values in the healthy control database) was the outcome measure in a logistic regression model that included stenosis grade and location. Results- Logistic regression showed that anterior ( P<0.0001) and middle cerebral artery territory regions ( P=0.003) in Moyamoya patients were susceptible to hypoperfusion, whereas posterior regions were not. Cortical regions supplied by arteries with stenosis on MR angiography showed more hypoperfusion than normal arteries ( P=0.001), but the extent of hypoperfusion was not different between mild-moderate versus severe stenosis. Multidelay ASL did not perform differently from [15O]-water PET in detecting perfusion abnormalities, but standard ASL overestimated the extent of hypoperfusion in patients ( P=0.003). Conclusions- This simultaneous PET/MRI study supports the use of multidelay ASL MRI in clinical evaluation of Moyamoya disease in settings where nuclear medicine imaging is not available and application of a normative perfusion database to automatically identify abnormal CBF in patients.
Assuntos
Bases de Dados Factuais , Imageamento por Ressonância Magnética , Artéria Cerebral Média , Doença de Moyamoya , Tomografia por Emissão de Pósitrons , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Artéria Cerebral Média/diagnóstico por imagem , Artéria Cerebral Média/fisiopatologia , Doença de Moyamoya/diagnóstico por imagem , Doença de Moyamoya/fisiopatologia , Marcadores de SpinRESUMO
We report an asymmetric behavior of optical pulses during their propagation through a time-varying linear optical medium. The refractive index of the medium is considered to be varying with time and complex, such that a sufficient amount of gain and loss is present to realize their effect on pulse propagation. We have exploited the universal formula for optical fields in time-varying media. Numerically simulated results reveal that pulses undergo opposite temporal shifts around their initial center position during their bi-directional propagation through the medium along with corresponding spectral shifts. Moreover, the peak power and accumulated chirp (time derivative of accumulated phase) of the output pulse in both propagation directions are also opposite in nature, irrespective of their initial state. Numerically simulated behavior of the pulses agrees well with the analytical solutions.
RESUMO
Chronic sciatica is a major cause of disability worldwide, but accurate diagnosis of the causative pathology remains challenging. In this report, the feasibility of an 18F-FDG PET/MRI approach for improved diagnosis of chronic sciatica is presented. Methods:18F-FDG PET/MRI was performed on 9 chronic sciatica patients and 5 healthy volunteers (healthy controls). Region-of-interest analysis using SUVmax was performed, and 18F-FDG uptake in lesions was compared with that in the corresponding areas in healthy controls. Results: Significantly increased 18F-FDG uptake was observed in detected lesions in all patients and was correlated with pain symptoms. 18F-FDG-avid lesions not only were found in impinged spinal nerves but also were associated with nonspinal causes of pain, such as facet joint degeneration, pars defect, or presumed scar neuroma. Conclusion: The feasibility of 18F-FDG PET/MRI for diagnosing pain generators in chronic sciatica was demonstrated, revealing various possible etiologies.
Assuntos
Fluordesoxiglucose F18 , Imageamento por Ressonância Magnética , Imagem Multimodal , Tomografia por Emissão de Pósitrons , Ciática/diagnóstico por imagem , Coluna Vertebral/diagnóstico por imagem , Adulto , Doença Crônica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dor/complicações , Ciática/complicações , Adulto JovemRESUMO
BACKGROUND AND PURPOSE: Arterial spin labeling (ASL) MRI is a promising, noninvasive technique to image cerebral blood flow (CBF) but is difficult to use in cerebrovascular patients with abnormal, long arterial transit times through collateral pathways. To be clinically adopted, ASL must first be optimized and validated against a reference standard in these challenging patient cases. METHODS: We compared standard-delay ASL (post-label delay=2.025 seconds), multidelay ASL (post-label delay=0.7-3.0 seconds), and long-label long-delay ASL acquisitions (post-label delay=4.0 seconds) against simultaneous [15O]-positron emission tomography (PET) CBF maps in 15 Moyamoya patients on a hybrid PET/MRI scanner. Dynamic susceptibility contrast was performed in each patient to identify areas of mild, moderate, and severe time-to-maximum (Tmax) delays. Relative CBF measurements by each ASL scan in 20 cortical regions were compared with the PET reference standard, and correlations were calculated for areas with moderate and severe Tmax delays. RESULTS: Standard-delay ASL underestimated relative CBF by 20% in areas of severe Tmax delays, particularly in anterior and middle territories commonly affected by Moyamoya disease (P<0.001). Arterial transit times correction by multidelay acquisitions led to improved consistency with PET, but still underestimated CBF in the presence of long transit delays (P=0.02). Long-label long-delay ASL scans showed the strongest correlation relative to PET, and there was no difference in mean relative CBF between the modalities, even in areas of severe delays. CONCLUSIONS: Post-label delay times of ≥4 seconds are needed and may be combined with multidelay strategies for robust ASL assessment of CBF in Moyamoya disease.
Assuntos
Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular , Doença de Moyamoya/diagnóstico por imagem , Adolescente , Adulto , Encéfalo/irrigação sanguínea , Circulação Colateral , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Imagem Multimodal , Radioisótopos de Oxigênio , Tomografia por Emissão de Pósitrons , Marcadores de SpinRESUMO
The purpose of this study was to assess safety, biodistribution, and radiation dosimetry in humans for the highly selective σ-1 receptor PET agent 18F-6-(3-fluoropropyl)-3-(2-(azepan-1-yl)ethyl)benzo[d]thiazol-2(3H)-one (18F-FTC-146). Methods: Ten healthy volunteers (5 women, 5 men; age ± SD, 34.3 ± 6.5 y) were recruited, and written informed consent was obtained from all participants. Series of whole-body PET/MRI examinations were acquired for up to 3 h after injection (357.2 ± 48.8 MBq). Blood samples were collected, and standard vital signs (heart rate, pulse oximetry, and body temperature) were monitored at regular intervals. Regions of interest were delineated, time-activity curves were calculated, and organ uptake and dosimetry were estimated. Results: All subjects tolerated the PET/MRI examination well, and no adverse reactions to 18F-FTC-146 were reported. High accumulation of 18F-FTC-146 was observed in σ-1 receptor-dense organs such as the pancreas and spleen, moderate uptake in the brain and myocardium, and low uptake in bone and muscle. High uptake was also observed in the kidneys and bladder, indicating renal tracer clearance. The effective dose of 18F-FTC-146 was 0.0259 ± 0.0034 mSv/MBq (range, 0.0215-0.0301 mSv/MBq). Conclusion: First-in-human studies with clinical-grade 18F-FTC-146 were successful. Injection of 18F-FTC-146 is safe, and absorbed doses are acceptable. The potential of 18F-FTC-146 as an imaging agent for a variety of neuroinflammatory diseases is currently under investigation.