Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(4): e25958, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38390100

RESUMO

This study aimed to develop an automatic diagnostic scheme for bruxism, a sleep-related disorder characterized by teeth grinding and clenching. The aim was to improve on existing methods, which have been proven to be inefficient and challenging. We utilized a novel hybrid machine learning classifier, facilitated by the Weka tool, to diagnose bruxism from biological signals. The study processed and examined these biological signals by calculating the power spectral density. Data were categorized into normal or bruxism categories based on the EEG channel (C4-A1), and the sleeping phases were classified into wake (w) and rapid eye movement (REM) stages using the ECG channel (ECG1-ECG2). The classification resulted in a maximum specificity of 93% and an accuracy of 95% for the EEG-based diagnosis. The ECG-based classification yielded a supreme specificity of 87% and an accuracy of 96%. Furthermore, combining these phases using the EMG channel (EMG1-EMG2) achieved the highest specificity of 95% and accuracy of 98%. The ensemble Weka tool combined all three physiological signals EMG, ECG, and EEG, to classify the sleep stages and subjects. This integration increased the specificity and accuracy to 97% and 99%, respectively. This indicates that a more precise bruxism diagnosis can be obtained by including all three biological signals. The proposed method significantly improves bruxism diagnosis accuracy, potentially enhancing automatic home monitoring systems for this disorder. Future studies may expand this work by applying it to patients for practical use.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38082671

RESUMO

The process of integration of inputs from several sensory modalities in the human brain is referred to as multisensory integration. Age-related cognitive decline leads to a loss in the ability of the brain to conceive multisensory inputs. There has been considerable work done in the study of such cognitive changes for the old age groups. However, in the case of middle age groups, such analysis is limited. Motivated by this, in the current work, EEG-based functional connectivity during audiovisual temporal asynchrony integration task for middle-aged groups is explored. Investigation has been carried out during different tasks such as: unimodal audio, unimodal visual, and variations of audio-visual stimulus. A correlation-based functional connectivity analysis is done, and the changes among different age groups including: young (18-25 years), transition from young to medium age (25-33 years), and medium (33-41 years), are observed. Furthermore, features extracted from the connectivity graphs have been used to classify among the different age groups. Classification accuracies of 89.4% and 88.4% are obtained for the Audio and Audio-50-Visual stimuli cases with a Random Forest based classifier, thereby validating the efficacy of the proposed method.


Assuntos
Percepção Auditiva , Percepção Visual , Pessoa de Meia-Idade , Humanos , Adolescente , Adulto Jovem , Adulto , Tempo de Reação , Encéfalo , Mapeamento Encefálico
3.
IEEE Trans Biomed Eng ; 70(10): 2933-2942, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37104106

RESUMO

OBJECTIVE: We present a novel framework for the detection and continuous evaluation of 3D motion perception by deploying a virtual reality environment with built-in eye tracking. METHODS: We created a biologically-motivated virtual scene that involved a ball moving in a restricted Gaussian random walk against a background of 1/f noise. Sixteen visually healthy participants were asked to follow the moving ball while their eye movements were monitored binocularly using the eye tracker. We calculated the convergence positions of their gaze in 3D using their fronto-parallel coordinates and linear least-squares optimization. Subsequently, to quantify 3D pursuit performance, we employed a first-order linear kernel analysis known as the Eye Movement Correlogram technique to separately analyze the horizontal, vertical and depth components of the eye movements. Finally, we checked the robustness of our method by adding systematic and variable noise to the gaze directions and re-evaluating 3D pursuit performance. RESULTS: We found that the pursuit performance in the motion-through depth component was reduced significantly compared to that for fronto-parallel motion components. We found that our technique was robust in evaluating 3D motion perception, even when systematic and variable noise was added to the gaze directions. CONCLUSION: The proposed framework enables the assessment of 3D Motion perception by evaluating continuous pursuit performance through eye-tracking. SIGNIFICANCE: Our framework paves the way for a rapid, standardized and intuitive assessment of 3D motion perception in patients with various eye disorders.


Assuntos
Percepção de Movimento , Realidade Virtual , Humanos , Movimentos Oculares , Movimento (Física) , Caminhada , Acompanhamento Ocular Uniforme
4.
bioRxiv ; 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35132408

RESUMO

The Coronavirus Disease 2019 (COVID-19) has affected all aspects of life around the world. Neuroimaging evidence suggests the novel coronavirus can attack the central nervous system (CNS), causing cerebro-vascular abnormalities in the brain. This can lead to focal changes in cerebral blood flow and metabolic oxygen consumption rate in the brain. However, the extent and spatial locations of brain alterations in COVID-19 survivors are largely unknown. In this study, we have assessed brain functional connectivity (FC) using resting-state functional MRI (RS-fMRI) in 38 (25 males) COVID patients two weeks after hospital discharge, when PCR negative and 31 (24 males) healthy subjects. FC was estimated using independent component analysis (ICA) and dual regression. When compared to the healthy group, the COVID group demonstrated significantly enhanced FC in the basal ganglia and precuneus networks (family wise error (fwe) corrected, pfwe < 0.05), while, on the other hand, reduced FC in the language network (pfwe < 0.05). The COVID group also experienced higher fatigue levels during work, compared to the healthy group (p < 0.001). Moreover, within the precuneus network, we noticed a significant negative correlation between FC and fatigue scores across groups (Spearman's ρ = -0.47, p = 0.001, r2 = 0.22). Interestingly, this relationship was found to be significantly stronger among COVID survivors within the left parietal lobe, which is known to be structurally and functionally associated with fatigue in other neurological disorders.

5.
Surv Ophthalmol ; 68(1): 126-141, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35988744

RESUMO

We estimated the proportion of children with stereopsis following surgery in congenital and developmental cataracts by systematic review and meta-analysis and also considered the factors influencing stereopsis, such as intervention age and presence of strabismus. Stereopsis is directly related to quality of life, and investigating its levels following cataract surgery in children may help decide the right time to intervene, particularly in the context of brain plasticity. We conducted a systematic literature search using Scopus, PubMed, and Web of Science and found 25 case series, 3 cohorts, and 3 clinical trial studies from 1/1/1995 to 31/12/2020. Study-specific proportions of stereopsis from 923 children were pooled using a random-effects model, and stratified analyses were conducted based on intervention age and pre-existing strabismus as a confounder. We appraised the risk of bias using tools published by National Institutes of Health and evaluated publication bias with funnel plots and the Egger test. The pooled proportions of stereopsis based on 8 unilateral and 6 bilateral congenital cataract studies were 0.37 (95% CIs: [0.24, 0.53]) and 0.45 (95% CIs: [0.24,0.68]) when patients with preexisting strabismus were excluded as a confounder. When the intervention age was ≤6 months, proportions in unilateral congenital cataract group significantly increased to 0.52 (95% CIs: [0.37, 0.66]; P = 0.49) compared to 0.26 (95% CIs: [0.14, 0.44]; P = 0.16) otherwise. A similar increase in proportions was found when intervention age ≤4 months. In both unilateral and bilateral congenital cataract groups, proportions increased significantly when the confounder was excluded. Overall, proportions in bilateral congenital cataracts were significantly greater than unilateral cases (irrespective of confounder). Eight unilateral and 5 bilateral developmental cataract studies resulted in pooled proportions of 0.62 (95% CIs: [0.27, 0.88] and 0.82 (95% CIs: [0.4, 0.97]), respectively. Although proportions for bilateral developmental cataracts were greater than unilateral cataracts (irrespective of confounder), results were not statistically significant. Finally, proportions in unilateral developmental cataracts were significantly greater than unilateral congenital cataracts (Z = 7.413, P = 6.173694e-14). We conclude that surgical intervention within first 4-6 months can significantly affect postoperative outcomes in unilateral congenital cataracts. Analysis of existing data does not show a significant effect of intervention age on stereopsis outcomes for developmental cataracts.


Assuntos
Extração de Catarata , Catarata , Estrabismo , Criança , Humanos , Lactente , Qualidade de Vida , Acuidade Visual , Extração de Catarata/métodos , Percepção de Profundidade , Catarata/complicações , Estrabismo/cirurgia , Estudos Retrospectivos , Seguimentos
6.
Appl Soft Comput ; 131: 109683, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36277300

RESUMO

Worldwide COVID-19 is a highly infectious and rapidly spreading disease in almost all age groups. The Computed Tomography (CT) scans of lungs are found to be accurate for the timely diagnosis of COVID-19 infection. In the proposed work, a deep learning-based P-shot N-ways Siamese network along with prototypical nearest neighbor classifiers is implemented for the classification of COVID-19 infection from lung CT scan slices. For this, a Siamese network with an identical sub-network (weight sharing) is used for image classification with a limited dataset for each class. The feature vectors are obtained from the pre-trained sub-networks having weight sharing. The performance of the proposed methodology is evaluated on the benchmark MosMed dataset having categories zero (healthy control) and numerous COVID-19 infections. The proposed methodology is evaluated on (a) chest CT scans provided by medical hospitals in Moscow, Russia for 1110 patients, and (b) case study of low-dose CT scans of 42 patients provided by Avtaran healthcare in India. The deep learning-based Siamese network (15-shot 5-ways) obtained an accuracy of 98.07%, the sensitivity of 95.66%, specificity of 98.83%, and F1-score of 95.10%. The proposed work outperforms the COVID-19 infection severity classification with limited scans availability for numerous infection categories.

7.
Neuroimage Rep ; 2(2): 100095, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35496469

RESUMO

Background: Among systemic abnormalities caused by the novel coronavirus, little is known about the critical attack on the central nervous system (CNS). Few studies have shown cerebrovascular pathologies that indicate CNS involvement in acute patients. However, replication studies are necessary to verify if these effects persist in COVID-19 survivors more conclusively. Furthermore, recent studies indicate fatigue is highly prevalent among 'long-COVID' patients. How morphometry in each group relate to work-related fatigue need to be investigated. Method: COVID survivors were MRI scanned two weeks after hospital discharge. We hypothesized, these survivors will demonstrate altered gray matter volume (GMV) and experience higher fatigue levels when compared to healthy controls, leading to stronger correlation of GMV with fatigue. Voxel-based morphometry was performed on T1-weighted MRI images between 46 survivors and 30 controls. Unpaired two-sample t-test and multiple linear regression were performed to observe group differences and correlation of fatigue with GMV. Results: The COVID group experienced significantly higher fatigue levels and GMV of this group was significantly higher within the Limbic System and Basal Ganglia when compared to healthy controls. Moreover, while a significant positive correlation was observed across the whole group between GMV and self-reported fatigue, COVID subjects showed stronger effects within the Posterior Cingulate, Precuneus and Superior Parietal Lobule. Conclusion: Brain regions with GMV alterations in our analysis align with both single case acute patient reports and current group level neuroimaging findings. We also newly report a stronger positive correlation of GMV with fatigue among COVID survivors within brain regions associated with fatigue, indicating a link between structural abnormality and brain function in this cohort.

8.
Circuits Syst Signal Process ; 41(6): 3397-3414, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35002014

RESUMO

The coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus. COVID-19 is found to be the most infectious disease in last few decades. This disease has infected millions of people worldwide. The inadequate availability and the limited sensitivity of the testing kits have motivated the clinicians and the scientist to use Computer Tomography (CT) scans to screen COVID-19. Recent advances in technology and the availability of deep learning approaches have proved to be very promising in detecting COVID-19 with increased accuracy. However, deep learning approaches require a huge labeled training dataset, and the current availability of benchmark COVID-19 data is still small. For the limited training data scenario, the CNN usually overfits after several iterations. Hence, in this work, we have investigated different pre-trained network architectures with transfer learning for COVID-19 detection that can work even on a small medical imaging dataset. Various variants of the pre-trained ResNet model, namely ResNet18, ResNet50, and ResNet101, are investigated in the current paper for the detection of COVID-19. The experimental results reveal that transfer learned ResNet50 model outperformed other models by achieving a recall of 98.80% and an F1-score of 98.41%. To further improvise the results, the activations from different layers of best performing model are also explored for the detection using the support vector machine, logistic regression and K-nearest neighbor classifiers. Moreover, a classifier fusion strategy is also proposed that fuses the predictions from the different classifiers via majority voting. Experimental results reveal that via using learned image features and classification fusion strategy, the recall, and F1-score have improvised to 99.20% and 99.40%.

9.
medRxiv ; 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34845462

RESUMO

Background: Among systemic abnormalities caused by the novel coronavirus, little is known about the critical attack on the central nervous system (CNS). Few studies have shown cerebrovascular pathologies that indicate CNS involvement in acute patients. However, replication studies are necessary to verify if these effects persist in COVID-19 survivors more conclusively. Furthermore, recent studies indicate fatigue is highly prevalent among 'long-COVID' patients. How morphometry in each group relate to work-related fatigue need to be investigated. Method: COVID survivors were MRI scanned two weeks after hospital discharge. We hypothesized, these survivors will demonstrate altered gray matter volume (GMV) and experience higher fatigue levels when compared to healthy controls, leading to stronger correlation of GMV with fatigue. Voxel-based morphometry was performed on T1-weighted MRI images between 46 survivors and 30 controls. Unpaired two-sample t-test and multiple linear regression were performed to observe group differences and correlation of fatigue with GMV. Results: The COVID group experienced significantly higher fatigue levels and GMV of this group was significantly higher within the Limbic System and Basal Ganglia when compared to healthy controls. Moreover, while a significant positive correlation was observed across the whole group between GMV and self-reported fatigue, COVID subjects showed stronger effects within the Posterior Cingulate, Precuneus and Superior Parietal Lobule . Conclusion: Brain regions with GMV alterations in our analysis align with both single case acute patient reports and current group level neuroimaging findings. We also newly report a stronger positive correlation of GMV with fatigue among COVID survivors within brain regions associated with fatigue, indicating a link between structural abnormality and brain function in this cohort.

10.
Appl Intell (Dordr) ; 51(1): 571-585, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764547

RESUMO

Lung abnormality is one of the common diseases in humans of all age group and this disease may arise due to various reasons. Recently, the lung infection due to SARS-CoV-2 has affected a larger human community globally, and due to its rapidity, the World-Health-Organisation (WHO) declared it as pandemic disease. The COVID-19 disease has adverse effects on the respiratory system, and the infection severity can be detected using a chosen imaging modality. In the proposed research work; the COVID-19 is detected using transfer learning from CT scan images decomposed to three-level using stationary wavelet. A three-phase detection model is proposed to improve the detection accuracy and the procedures are as follows; Phase1- data augmentation using stationary wavelets, Phase2- COVID-19 detection using pre-trained CNN model and Phase3- abnormality localization in CT scan images. This work has considered the well known pre-trained architectures, such as ResNet18, ResNet50, ResNet101, and SqueezeNet for the experimental evaluation. In this work, 70% of images are considered to train the network and 30% images are considered to validate the network. The performance of the considered architectures is evaluated by computing the common performance measures. The result of the experimental evaluation confirms that the ResNet18 pre-trained transfer learning-based model offered better classification accuracy (training = 99.82%, validation = 97.32%, and testing = 99.4%) on the considered image dataset compared with the alternatives.

11.
Front Neurosci ; 15: 745355, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690682

RESUMO

Standard automated perimetry (SAP) is the gold standard for evaluating the presence of visual field defects (VFDs). Nevertheless, it has requirements such as prolonged attention, stable fixation, and a need for a motor response that limit application in various patient groups. Therefore, a novel approach using eye movements (EMs) - as a complementary technique to SAP - was developed and tested in clinical settings by our group. However, the original method uses a screen-based eye-tracker which still requires participants to keep their chin and head stable. Virtual reality (VR) has shown much promise in ophthalmic diagnostics - especially in terms of freedom of head movement and precise control over experimental settings, besides being portable. In this study, we set out to see if patients can be screened for VFDs based on their EM in a VR-based framework and if they are comparable to the screen-based eyetracker. Moreover, we wanted to know if this framework can provide an effective and enjoyable user experience (UX) compared to our previous approach and the conventional SAP. Therefore, we first modified our method and implemented it on a VR head-mounted device with built-in eye tracking. Subsequently, 15 controls naïve to SAP, 15 patients with a neuro-ophthalmological disorder, and 15 glaucoma patients performed three tasks in a counterbalanced manner: (1) a visual tracking task on the VR headset while their EM was recorded, (2) the preceding tracking task but on a conventional screen-based eye tracker, and (3) SAP. We then quantified the spatio-temporal properties (STP) of the EM of each group using a cross-correlogram analysis. Finally, we evaluated the human-computer interaction (HCI) aspects of the participants in the three methods using a user-experience questionnaire. We find that: (1) the VR framework can distinguish the participants according to their oculomotor characteristics; (2) the STP of the VR framework are similar to those from the screen-based eye tracker; and (3) participants from all the groups found the VR-screening test to be the most attractive. Thus, we conclude that the EM-based approach implemented in VR can be a user-friendly and portable companion to complement existing perimetric techniques in ophthalmic clinics.

12.
Transl Vis Sci Technol ; 10(2): 1, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34003886

RESUMO

Purpose: Assessing the presence of visual field defects (VFD) through procedures such as perimetry is an essential aspect of the management and diagnosis of ocular disorders. However, even the latest perimetric methods have shortcomings-a high cognitive demand and requiring prolonged stable fixation and feedback through a button response. Consequently, an approach using eye movements (EM)-as a natural response-has been proposed as an alternate way to evaluate the presence of VFD. This approach has given good results for computer-simulated VFD. However, its use in patients is not well documented yet. Here we use this new approach to quantify the spatiotemporal properties (STP) of EM of various patients suffering from glaucoma and neuro-ophthalmological VFD and controls. Methods: In total, 15 glaucoma patients, 37 patients with a neuro-ophthalmological disorder, and 21 controls performed a visual tracking task while their EM were being recorded. Subsequently, the STP of EM were quantified using a cross-correlogram analysis. Decision trees were used to identify the relevant STP and classify the populations. Results: We achieved a classification accuracy of 94.5% (TPR/sensitivity = 96%, TNR/specificity = 90%) between patients and controls. Individually, the algorithm achieved an accuracy of 86.3% (TPR for neuro-ophthalmology [97%], glaucoma [60%], and controls [86%]). The STP of EM were highly similar across two different control cohorts. Conclusions: In an ocular tracking task, patients with VFD due to different underlying pathology make EM with distinctive STP. These properties are interpretable based on different clinical characteristics of patients and can be used for patient classification. Translational Relevance: Our EM-based screening tool may complement existing perimetric techniques in clinical practice.


Assuntos
Glaucoma , Testes de Campo Visual , Movimentos Oculares , Glaucoma/complicações , Humanos , Transtornos da Visão/diagnóstico , Campos Visuais
13.
Foot (Edinb) ; 42: 101650, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32045720

RESUMO

OBJECTIVES: To determine the prevalence of foot problems and its related associations in different regions across India among people with Intellectual Disabilities (ID) stratified by age and gender. METHOD: A survey was done among a randomly chosen sample of 1517 Indian inhabitants (8-50 years of age) residing in different regions of the country under the drive named Healthy Athlete (HA) Fit Feet Screening Program of Special Olympics Bharat. Chi-Square test is used to draw an inference of prevalence of different foot conditions among the population from different age groups and from different genders. RESULTS: The percentage of Healthy Athletes with the normal foot in Bhiwadi, Warangal, Ajmer, Bhopal, Guwahati, and Jodhpur was 48.14%, 53.92%, 55.82%, 27.31%, 54.47%, and 76.34%. The percentage of athletes with foot problems from these areas was 53.08%, 46.07%, 44.1%, 72.69%, 45.53%, and 26.35%. Moreover, on analyzing the athletes with foot problems on the basis of the age group, it was found that the middle age group athletes from Bhopal had the highest incidence of more frequent foot problems. Furthermore, on comparing the prevalence of foot problem on basis of gender it was found that female athletes have more prevalence than men. CONCLUSION: The numerical results indicate the middle age group subjects have statistically significant higher tendencies towards the foot problems in contrast to the lower and the higher age group subjects Also, the prevalence of the foot problems and their related associations in women are higher compared to men.


Assuntos
Atletas/estatística & dados numéricos , Pessoas com Deficiência/estatística & dados numéricos , Doenças do Pé/epidemiologia , Deficiência Intelectual/epidemiologia , Adolescente , Adulto , Distribuição por Idade , Criança , Feminino , Humanos , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , Prevalência , Distribuição por Sexo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA