Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Clin Proteomics ; 21(1): 26, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565978

RESUMO

BACKGROUND: Clinical samples are irreplaceable, and their transformation into searchable and reusable digital biobanks is critical for conducting statistically empowered retrospective and integrative research studies. Currently, mainly data-independent acquisition strategies are employed to digitize clinical sample cohorts comprehensively. However, the sensitivity of DIA is limited, which is why selected marker candidates are often additionally measured targeted by parallel reaction monitoring. METHODS: Here, we applied the recently co-developed hybrid-PRM/DIA technology as a new intelligent data acquisition strategy that allows for the comprehensive digitization of rare clinical samples at the proteotype level. Hybrid-PRM/DIA enables enhanced measurement sensitivity for a specific set of analytes of current clinical interest by the intelligent triggering of multiplexed parallel reaction monitoring (MSxPRM) in combination with the discovery-driven digitization of the clinical biospecimen using DIA. Heavy-labeled reference peptides were utilized as triggers for MSxPRM and monitoring of endogenous peptides. RESULTS: We first evaluated hybrid-PRM/DIA in a clinical context on a pool of 185 selected proteotypic peptides for tumor-associated antigens derived from 64 annotated human protein groups. We demonstrated improved reproducibility and sensitivity for the detection of endogenous peptides, even at lower concentrations near the detection limit. Up to 179 MSxPRM scans were shown not to affect the overall DIA performance. Next, we applied hybrid-PRM/DIA for the integrated digitization of biobanked melanoma samples using a set of 30 AQUA peptides against 28 biomarker candidates with relevance in molecular tumor board evaluations of melanoma patients. Within the DIA-detected approximately 6500 protein groups, the selected marker candidates such as UFO, CDK4, NF1, and PMEL could be monitored consistently and quantitatively using MSxPRM scans, providing additional confidence for supporting future clinical decision-making. CONCLUSIONS: Combining PRM and DIA measurements provides a new strategy for the sensitive and reproducible detection of protein markers from patients currently being discussed in molecular tumor boards in combination with the opportunity to discover new biomarker candidates.

2.
Proteomics ; 24(5): e2300162, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37775337

RESUMO

Acute kidney injury (AKI) manifests as a major health concern, particularly for the elderly. Understanding AKI-related proteome changes is critical for prevention and development of novel therapeutics to recover kidney function and to mitigate the susceptibility for recurrent AKI or development of chronic kidney disease. In this study, mouse kidneys were subjected to ischemia-reperfusion injury, and the contralateral kidneys remained uninjured to enable comparison and assess injury-induced changes in the kidney proteome. A ZenoTOF 7600 mass spectrometer was optimized for data-independent acquisition (DIA) to achieve comprehensive protein identification and quantification. Short microflow gradients and the generation of a deep kidney-specific spectral library allowed for high-throughput, comprehensive protein quantification. Upon AKI, the kidney proteome was completely remodeled, and over half of the 3945 quantified protein groups changed significantly. Downregulated proteins in the injured kidney were involved in energy production, including numerous peroxisomal matrix proteins that function in fatty acid oxidation, such as ACOX1, CAT, EHHADH, ACOT4, ACOT8, and Scp2. Injured kidneys exhibited severely damaged tissues and injury markers. The comprehensive and sensitive kidney-specific DIA-MS assays feature high-throughput analytical capabilities to achieve deep coverage of the kidney proteome, and will serve as useful tools for developing novel therapeutics to remediate kidney function.


Assuntos
Injúria Renal Aguda , Proteômica , Humanos , Camundongos , Animais , Idoso , Proteoma , Regulação para Baixo , Rim
3.
bioRxiv ; 2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36865241

RESUMO

Acute kidney injury (AKI) manifests as a major health concern, particularly for the elderly. Understanding AKI-related proteome changes is critical for prevention and development of novel therapeutics to recover kidney function and to mitigate the susceptibility for recurrent AKI or development of chronic kidney disease. In this study, mouse kidneys were subjected to ischemia-reperfusion injury, and the contralateral kidneys remained uninjured to enable comparison and assess injury-induced changes in the kidney proteome. A fast-acquisition rate ZenoTOF 7600 mass spectrometer was introduced for data-independent acquisition (DIA) for comprehensive protein identification and quantification. Short microflow gradients and the generation of a deep kidney-specific spectral library allowed for high-throughput, comprehensive protein quantification. Upon AKI, the kidney proteome was completely remodeled, and over half of the 3,945 quantified protein groups changed significantly. Downregulated proteins in the injured kidney were involved in energy production, including numerous peroxisomal matrix proteins that function in fatty acid oxidation, such as ACOX1, CAT, EHHADH, ACOT4, ACOT8, and Scp2. Injured mice exhibited severely declined health. The comprehensive and sensitive kidney-specific DIA assays highlighted here feature high-throughput analytical capabilities to achieve deep coverage of the kidney proteome and will serve as useful tools for developing novel therapeutics to remediate kidney function.

4.
Hemodial Int ; 27(1): 38-44, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36081392

RESUMO

INTRODUCTION: Severe COVID-19 infections increase the risk of thrombotic events and Intensive Care Units reported increased extracorporeal circuit clotting (ECC) in COVID-19 patients with acute kidney injury. We wished to determine whether hemodialysis (HD) patients with COVID-19 also have increased risk of circuit clotting. METHODS: We reviewed coagulation studies and HD records, 4 weeks before and after COVID-19 polymerase chain reaction detection in HD patients between April 2020 and June 2021. FINDINGS: Sixty-eight (33.5%) of 203 HD patients with COVID-19, 65% male, mean age 64.9 ± 15.3 years, experienced some circuit clotting, and no clotting recorded prior to positive test results. In those who experienced ECC, prothrombin, activated partial thromboplastin or thrombin times were not different, whereas median factor VIII (273 [168-419] vs. 166 [139-225] IU/dl, p < 0.001), D-dimers (2654 [1381-6019] vs. 1351 [786-2334] ng/ml, p < 0.05), and fibrinogen (5.6 ± 1.4 vs. 4.9 ± 1.4 g/L, p < 0.05) were greater. Antithrombin (94 [83-112] vs. 89 [84-103] IU/dl), protein C (102 [80-130] vs. 86 [76-106] IU/dl), protein S (65 [61-75] vs. 65 [52-79] IU/dl) and platelet counts (193 [138-243] vs. 174 [138-229] × 109 /L) did not differ. On multivariable logistic analysis, circuit clotting was associated with log factor VIII (odds ratio [OR] 14.8 (95% confidence limits [95% CL] 1.12-19.6), p = 0.041), fibrinogen (OR 1.57 [95% CL 1.14-21.7], p = 0.006) and log D dimer (OR 4.8 [95% CL 1.16-12.5], p = 0.028). DISCUSSION: Extracorporeal circuit clotting was increased within 4 weeks of testing positive for COVID-19. Clotting was associated with increased factor VIII, fibrinogen and D-dimer, suggesting that the risk of circuit clotting was related to the inflammatory response to COVID-19.


Assuntos
COVID-19 , Fator VIII , Nefropatias , Diálise Renal , Trombose , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , COVID-19/sangue , COVID-19/complicações , Fator VIII/análise , Fator VIII/metabolismo , Fibrinogênio/análise , Heparina , Diálise Renal/efeitos adversos , Trombose/etiologia , Antitrombinas/sangue , Nefropatias/complicações , Nefropatias/terapia
5.
Haemophilia ; 26(6): e300-e307, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32892451

RESUMO

INTRODUCTION: Laboratory monitoring for factor VIII inhibitors ideally requires samples with the lowest possible factor VIII (FVIII) level, potentially challenging in patients with congenital haemophilia A (CHA) receiving regular prophylaxis and acquired haemophilia A (AHA) patients with endogenous FVIII. Inactivation of FVIII by preheating (preheat treatment, PHT) of patient plasma has been suggested to facilitate monitoring. AIM: To evaluate the clinical utility of PHT prior to inhibitor analysis by modified Nijmegen-Bethesda assay (mNBA) in patients with CHA and AHA. METHODS: Inhibitor screening by mNBA under standard conditions and with PHT at 56°C for 30, 60 and 90 minutes was evaluated. FVIII inhibitor results between 2007 and 2010 without PHT (720 results from 222 CHA and AHA patients), and between 2011 and 2014 post-PHT (1102 results from 302 patients) were available for analysis. RESULTS: Of total 1822 results available, 61% were from severe HA patients, 22% from mild and moderate HA and 16% from AHA. Pre-PHT, 74% of samples were analysed by the mNBA, and the remaining 26% were not tested as FVIII levels were >20 IU/dL as per local protocol. Postintroduction of PHT (90 and 60 minutes), 96% of samples received were analysed for an inhibitor. Post-PHT in patients with AHA (n = 26), 69% of samples tested with factor VIII levels >20 IU/dL were found to have detectable inhibitor. CONCLUSION: FVIII inhibitor testing using PHT at 56°C for 60 minutes facilitates inhibitor surveillance of CHA on prophylaxis. Potentially, 30 minutes at 56°C might be equally efficacious. In AHA receiving immunosuppression, monitoring of inhibitor titre after initial factor VIII response might enable personalized immunosuppression.


Assuntos
Testes de Coagulação Sanguínea/métodos , Hemofilia A/diagnóstico , Idoso , Feminino , Hemofilia A/patologia , Humanos
6.
J Proteome Res ; 19(6): 2404-2418, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32290654

RESUMO

Protein acetylation is a widespread post-translational modification implicated in many cellular processes. Recent advances in mass spectrometry have enabled the cataloging of thousands of sites throughout the cell; however, identifying regulatory acetylation marks have proven to be a daunting task. Knowledge of the kinetics and stoichiometry of site-specific acetylation is an important factor to uncover function. Here, an improved method of quantifying acetylation stoichiometry was developed and validated, providing a detailed landscape of dynamic acetylation stoichiometry within cellular compartments. The dynamic nature of site-specific acetylation in response to serum stimulation was revealed. In two distinct human cell lines, growth factor stimulation led to site-specific, temporal acetylation changes, revealing diverse kinetic profiles that clustered into several groups. Overlap of dynamic acetylation sites among two different human cell lines suggested similar regulatory control points across major cellular pathways that include splicing, translation, and protein homeostasis. Rapid increases in acetylation on protein translational machinery suggest a positive regulatory role under progrowth conditions. Finally, higher median stoichiometry was observed in cellular compartments where active acetyltransferases are well described. Data sets can be accessed through ProteomExchange via the MassIVE repository (ProteomExchange: PXD014453; MassIVE: MSV000084029).


Assuntos
Lisina , Processamento de Proteína Pós-Traducional , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Humanos , Lisina/metabolismo , Espectrometria de Massas , Proteoma/genética , Proteoma/metabolismo
7.
Mol Syst Biol ; 16(3): e9170, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32175694

RESUMO

Profiling of biological relationships between different molecular layers dissects regulatory mechanisms that ultimately determine cellular function. To thoroughly assess the role of protein post-translational turnover, we devised a strategy combining pulse stable isotope-labeled amino acids in cells (pSILAC), data-independent acquisition mass spectrometry (DIA-MS), and a novel data analysis framework that resolves protein degradation rate on the level of mRNA alternative splicing isoforms and isoform groups. We demonstrated our approach by the genome-wide correlation analysis between mRNA amounts and protein degradation across different strains of HeLa cells that harbor a high grade of gene dosage variation. The dataset revealed that specific biological processes, cellular organelles, spatial compartments of organelles, and individual protein isoforms of the same genes could have distinctive degradation rate. The protein degradation diversity thus dissects the corresponding buffering or concerting protein turnover control across cancer cell lines. The data further indicate that specific mRNA splicing events such as intron retention significantly impact the protein abundance levels. Our findings support the tight association between transcriptome variability and proteostasis and provide a methodological foundation for studying functional protein degradation.


Assuntos
Isoformas de Proteínas/análise , Proteínas/análise , Isoformas de RNA/metabolismo , RNA Mensageiro/metabolismo , Processamento Alternativo , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Marcação por Isótopo/métodos , Espectrometria de Massas , Isoformas de Proteínas/metabolismo , Proteínas/metabolismo , Proteólise , Proteômica/métodos , Isoformas de RNA/genética , RNA Mensageiro/genética , Fluxo de Trabalho
8.
Nat Commun ; 11(1): 787, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034161

RESUMO

Quantitative phosphoproteomics has transformed investigations of cell signaling, but it remains challenging to scale the technology for high-throughput analyses. Here we report a rapid and reproducible approach to analyze hundreds of phosphoproteomes using data-independent acquisition (DIA) with an accurate site localization score incorporated into Spectronaut. DIA-based phosphoproteomics achieves an order of magnitude broader dynamic range, higher reproducibility of identification, and improved sensitivity and accuracy of quantification compared to state-of-the-art data-dependent acquisition (DDA)-based phosphoproteomics. Notably, direct DIA without the need of spectral libraries performs close to analyses using project-specific libraries, quantifying > 20,000 phosphopeptides in 15 min single-shot LC-MS analysis per condition. Adaptation of a 3D multiple regression model-based algorithm enables global determination of phosphorylation site stoichiometry in DIA. Scalability of the DIA approach is demonstrated by systematically analyzing the effects of thirty kinase inhibitors in context of epidermal growth factor (EGF) signaling showing that specific protein kinases mediate EGF-dependent phospho-regulation.


Assuntos
Algoritmos , Biologia Computacional/métodos , Fosfopeptídeos/análise , Proteínas Quinases/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Fator de Crescimento Epidérmico/metabolismo , Células HeLa , Ensaios de Triagem em Larga Escala/métodos , Humanos , Fosfopeptídeos/metabolismo , Fosfoproteínas/análise , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Reprodutibilidade dos Testes
9.
Mol Omics ; 15(5): 348-360, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31465043

RESUMO

Comprehensive proteome quantification is crucial for a better understanding of underlying mechanisms of diseases. Liquid chromatography mass spectrometry (LC-MS) has become the method of choice for comprehensive proteome quantification due to its power and versatility. Even though great advances have been made in recent years, full proteome coverage for complex samples remains challenging due to the high dynamic range of protein expression. Additionally, when studying disease regulatory proteins, biomarkers or potential drug targets are often low abundant, such as for instance kinases and transcription factors. Here, we show that with improvements in chromatography and data analysis the single shot proteome coverage can go beyond 10 000 proteins in human tissue. In a testis cancer study, we quantified 11 200 proteins using data independent acquisition (DIA). This depth was achieved with a false discovery rate of 1% which was experimentally validated using a two species test. We introduce the concept of hybrid libraries which combines the strength of direct searching of DIA data as well as the use of large project-specific or published DDA data sets. Remarkably deep proteome coverage is possible using hybrid libraries without the additional burden of creating a project-specific library. Within the testis cancer set, we found a large proportion of proteins in an altered expression (in total: 3351; 1453 increased in cancer). Many of these proteins could be linked to the hallmarks of cancer. For example, the complement system was downregulated which helps to evade the immune response and chromosomal replication was upregulated indicating a dysregulated cell cycle.


Assuntos
Cromatografia Líquida/instrumentação , Espectrometria de Massas/instrumentação , Células-Tronco Neoplásicas/química , Proteômica/métodos , Cromatografia Líquida/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Espectrometria de Massas/métodos , Células-Tronco Neoplásicas/metabolismo , Proteoma , Neoplasias Testiculares/metabolismo
10.
Mol Cell Proteomics ; 18(6): 1242-1254, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30948622

RESUMO

Comprehensive, high throughput analysis of the plasma proteome has the potential to enable holistic analysis of the health state of an individual. Based on our own experience and the evaluation of recent large-scale plasma mass spectrometry (MS) based proteomic studies, we identified two outstanding challenges: slow and delicate nano-flow liquid chromatography (LC) and irreproducibility of identification of data-dependent acquisition (DDA). We determined an optimal solution reducing these limitations with robust capillary-flow data-independent acquisition (DIA) MS. This platform can measure 31 plasma proteomes per day. Using this setup, we acquired a large-scale plasma study of the diet, obesity and genes dietary (DiOGenes) comprising 1508 samples. Proving the robustness, the complete acquisition was achieved on a single analytical column. Totally, 565 proteins (459 identified with two or more peptide sequences) were profiled with 74% data set completeness. On average 408 proteins (5246 peptides) were identified per acquisition (319 proteins in 90% of all acquisitions). The workflow reproducibility was assessed using 34 quality control pools acquired at regular intervals, resulting in 92% data set completeness with CVs for protein measurements of 10.9%.The profiles of 20 apolipoproteins could be profiled revealing distinct changes. The weight loss and weight maintenance resulted in sustained effects on low-grade inflammation, as well as steroid hormone and lipid metabolism, indicating beneficial effects. Comparison to other large-scale plasma weight loss studies demonstrated high robustness and quality of biomarker candidates identified. Tracking of nonenzymatic glycation indicated a delayed, slight reduction of glycation in the weight maintenance phase. Using stable-isotope-references, we could directly and absolutely quantify 60 proteins in the DIA.In conclusion, we present herein the first large-scale plasma DIA study and one of the largest clinical research proteomic studies to date. Application of this fast and robust workflow has great potential to advance biomarker discovery in plasma.


Assuntos
Proteínas Sanguíneas/metabolismo , Proteômica , Reologia , Redução de Peso , Adulto , Bases de Dados de Proteínas , Glicosilação , Humanos , Marcação por Isótopo , Proteoma/metabolismo , Padrões de Referência
11.
Circ Cardiovasc Genet ; 10(6)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29237681

RESUMO

BACKGROUND: Mass spectrometry is selective and sensitive, permitting routine quantification of multiple plasma proteins. However, commonly used nanoflow liquid chromatography (LC) approaches hamper sample throughput, reproducibility, and robustness. For this reason, most publications using plasma proteomics to date are small in study size. METHODS AND RESULTS: Here, we tested a standard-flow LC mass spectrometry (MS) method using multiple reaction monitoring for the application to large epidemiological cohorts. We have reduced the LC-MS run time to almost a third of the nanoflow LC-MS approach. On the basis of a comparison of the quantification of 100 plasma proteins in >1500 LC-MS runs, the SD range of the retention time during continuous operation was substantially lower with the standard-flow LC-MS (<0.05 minutes) compared with the nanoflow LC-MS method (0.26-0.44 minutes). In addition, the standard-flow LC method also offered less variation in protein measurements. However, 5× more sample volume was required to achieve similar sensitivity. Two different commercial multiple reaction monitoring kits and an antibody-based multiplexing kit were used to compare the apolipoprotein measurements in a subset of samples. In general, good agreement was observed between the 2 multiple reaction monitoring kits, but some of the multiple reaction monitoring-based measurements differed from antibody-based assays. CONCLUSIONS: The multiplexing capability of LC-MS combined with a standard-flow method increases throughput and reduces the costs of large-scale protein measurements in epidemiological cohorts, but protein rather than peptide standards will be required for defined absolute proteoform quantification.


Assuntos
Proteínas Sanguíneas/análise , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Proteoma/análise , Proteômica/métodos , Proteínas Sanguíneas/metabolismo , Estudos de Coortes , Humanos , Proteoma/metabolismo , Reprodutibilidade dos Testes
12.
Mol Cell Proteomics ; 16(12): 2296-2309, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29070702

RESUMO

Comprehensive, reproducible and precise analysis of large sample cohorts is one of the key objectives of quantitative proteomics. Here, we present an implementation of data-independent acquisition using its parallel acquisition nature that surpasses the limitation of serial MS2 acquisition of data-dependent acquisition on a quadrupole ultra-high field Orbitrap mass spectrometer. In deep single shot data-independent acquisition, we identified and quantified 6,383 proteins in human cell lines using 2-or-more peptides/protein and over 7100 proteins when including the 717 proteins that were identified on the basis of a single peptide sequence. 7739 proteins were identified in mouse tissues using 2-or-more peptides/protein and 8121 when including the 382 proteins that were identified based on a single peptide sequence. Missing values for proteins were within 0.3 to 2.1% and median coefficients of variation of 4.7 to 6.2% among technical triplicates. In very complex mixtures, we could quantify 10,780 proteins and 12,192 proteins when including the 1412 proteins that were identified based on a single peptide sequence. Using this optimized DIA, we investigated large-protein networks before and after the critical period for whisker experience-induced synaptic strength in the murine somatosensory cortex 1-barrel field. This work shows that parallel mass spectrometry enables proteome profiling for discovery with high coverage, reproducibility, precision and scalability.


Assuntos
Peptídeos/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Linhagem Celular , Cromatografia Líquida , Células HEK293 , Células HeLa , Humanos , Camundongos , Peptídeos/genética , Reprodutibilidade dos Testes , Análise de Sequência de Proteína
13.
Mol Cell Proteomics ; 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28428241

RESUMO

This article has been withdrawn by the authors. This article did not comply with the editorial guidelines of MCP. Specifically, single peptide based protein identifications of 9-19% were included in the analysis and discussed in the results and conclusions. We wish to withdraw this article and resubmit a clarified, corrected manuscript for review.

14.
Proteomics ; 16(15-16): 2246-56, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27213465

RESUMO

Targeted analysis of data-independent acquisition (DIA) data is a powerful mass spectrometric approach for comprehensive, reproducible and precise proteome quantitation. It requires a spectral library, which contains for all considered peptide precursor ions empirically determined fragment ion intensities and their predicted retention time (RT). RTs, however, are not comparable on an absolute scale, especially if heterogeneous measurements are combined. Here, we present a method for high-precision prediction of RT, which significantly improves the quality of targeted DIA analysis compared to in silico RT prediction and the state of the art indexed retention time (iRT) normalization approach. We describe a high-precision normalized RT algorithm, which is implemented in the Spectronaut software. We, furthermore, investigate the influence of nine different experimental factors, such as chromatographic mobile and stationary phase, on iRT precision. In summary, we show that using targeted analysis of DIA data with high-precision iRT significantly increases sensitivity and data quality. The iRT values are generally transferable across a wide range of experimental conditions. Best results, however, are achieved if library generation and analytical measurements are performed on the same system.


Assuntos
Espectrometria de Massas/métodos , Proteômica/métodos , Algoritmos , Biologia Computacional , Proteoma/análise
15.
Mol Cell Proteomics ; 14(5): 1400-10, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25724911

RESUMO

The data-independent acquisition (DIA) approach has recently been introduced as a novel mass spectrometric method that promises to combine the high content aspect of shotgun proteomics with the reproducibility and precision of selected reaction monitoring. Here, we evaluate, whether SWATH-MS type DIA effectively translates into a better protein profiling as compared with the established shotgun proteomics. We implemented a novel DIA method on the widely used Orbitrap platform and used retention-time-normalized (iRT) spectral libraries for targeted data extraction using Spectronaut. We call this combination hyper reaction monitoring (HRM). Using a controlled sample set, we show that HRM outperformed shotgun proteomics both in the number of consistently identified peptides across multiple measurements and quantification of differentially abundant proteins. The reproducibility of HRM in peptide detection was above 98%, resulting in quasi complete data sets compared with 49% of shotgun proteomics. Utilizing HRM, we profiled acetaminophen (APAP)(1)-treated three-dimensional human liver microtissues. An early onset of relevant proteome changes was revealed at subtoxic doses of APAP. Further, we detected and quantified for the first time human NAPQI-protein adducts that might be relevant for the toxicity of APAP. The adducts were identified on four mitochondrial oxidative stress related proteins (GATM, PARK7, PRDX6, and VDAC2) and two other proteins (ANXA2 and FTCD). Our findings imply that DIA should be the preferred method for quantitative protein profiling.


Assuntos
Acetaminofen/farmacologia , Analgésicos não Narcóticos/farmacologia , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Peptídeos/análise , Proteoma/análise , Amidinotransferases/análise , Amidinotransferases/genética , Amidinotransferases/metabolismo , Amônia-Liases/análise , Amônia-Liases/genética , Amônia-Liases/metabolismo , Anexina A2/análise , Anexina A2/genética , Anexina A2/metabolismo , Expressão Gênica , Glutamato Formimidoiltransferase/análise , Glutamato Formimidoiltransferase/genética , Glutamato Formimidoiltransferase/metabolismo , Hepatócitos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/análise , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Enzimas Multifuncionais , Proteínas Oncogênicas/análise , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Peroxirredoxina VI/análise , Peroxirredoxina VI/genética , Peroxirredoxina VI/metabolismo , Proteína Desglicase DJ-1 , Proteólise , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos , Técnicas de Cultura de Tecidos , Tripsina/química , Canal de Ânion 2 Dependente de Voltagem/análise , Canal de Ânion 2 Dependente de Voltagem/genética , Canal de Ânion 2 Dependente de Voltagem/metabolismo
16.
J Proteome Res ; 11(8): 4044-51, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22770492

RESUMO

The identification of proteins in proteomics experiments is usually based on mass information derived from tandem mass spectrometry data. To improve the performance of the identification algorithms, additional information available in the fragment peak intensity patterns has been shown to be useful. In this study, we consider the effect of iTRAQ labeling on the fragment peak intensity patterns of singly charged peptides from MALDI tandem MS data. The presence of an iTRAQ-modified basic group on the N-terminus leads to a more pronounced set of b-ion peaks and distinct changes in the abundance of specific peptide types. We performed a simple intensity prediction by using a decision-tree machine learning approach and were able to show that the relative ion abundance in a spectrum can be correctly predicted and distinguished from closely related sequences. This information will be useful for the development of improved method-specific intensity-based protein identification algorithms.


Assuntos
Fragmentos de Peptídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Proteínas de Arabidopsis/química , Inteligência Artificial , Proteínas de Bactérias/química , Simulação por Computador , Interpretação Estatística de Dados , Árvores de Decisões , Lactococcus lactis , Modelos Químicos , Mapeamento de Peptídeos/métodos , Coloração e Rotulagem
17.
Mol Cell Proteomics ; 10(7): M000052MCP200, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21742800

RESUMO

Biochemical and biophysical characterization of CFTR (the cystic fibrosis transmembrane conductance regulator) is thwarted by difficulties to obtain sufficient quantities of correctly folded and functional protein. Here we have produced human CFTR in the prokaryotic expression host Lactococcus lactis. The full-length protein was detected in the membrane of the bacterium, but the yields were too low (< 0.1% of membrane proteins) for in vitro functional and structural characterization, and induction of the expression of CFTR resulted in growth arrest. We used isobaric tagging for relative and absolute quantitation based quantitative proteomics to find out why production of CFTR in L. lactis was problematic. Protein abundances in membrane and soluble fractions were monitored as a function of induction time, both in CFTR expression cells and in control cells that did not express CFTR. Eight hundred and forty six proteins were identified and quantified (35% of the predicted proteome), including 163 integral membrane proteins. Expression of CFTR resulted in an increase in abundance of stress-related proteins (e.g. heat-shock and cell envelope stress), indicating the presence of misfolded proteins in the membrane. In contrast to the reported consequences of membrane protein overexpression in Escherichia coli, there were no indications that the membrane protein insertion machinery (Sec) became overloaded upon CFTR production in L. lactis. Nutrients and ATP became limiting in the control cells as the culture entered the late exponential and stationary growth phases but this did not happen in the CFTR expressing cells, which had stopped growing upon induction. The different stress responses elicited in E. coli and L. lactis upon membrane protein production indicate that different strategies are needed to overcome low expression yields and toxicity.


Assuntos
Adaptação Fisiológica , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Lactococcus lactis/fisiologia , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Bactérias/análise , Proteínas de Bactérias/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/isolamento & purificação , Regulação Bacteriana da Expressão Gênica , Humanos , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo , Proteoma/análise , Proteoma/metabolismo , Proteínas Recombinantes de Fusão/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
18.
J Proteome Res ; 9(11): 5922-8, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-20836568

RESUMO

LC-MALDI provides an often overlooked opportunity to exploit the separation between LC-MS and MS/MS stages of a 2D-LC-MS-based proteomics experiment, that is, by making a smarter selection for precursor fragmentation. Apex Peptide Elution Chain Selection (APECS) is a simple and powerful method for intensity-based peptide selection in a complex sample separated by 2D-LC, using a MALDI-TOF/TOF instrument. It removes the peptide redundancy present in the adjacent first-dimension (typically strong cation exchange, SCX) fractions by constructing peptide elution profiles that link the precursor ions of the same peptide across SCX fractions. Subsequently, the precursor ion most likely to fragment successfully in a given profile is selected for fragmentation analysis, selecting on precursor intensity and absence of adjacent ions that may cofragment. To make the method independent of experiment-specific tolerance criteria, we introduce the concept of the branching factor, which measures the likelihood of false clustering of precursor ions based on past experiments. By validation with a complex proteome sample of Arabidopsis thaliana, APECS identified an equivalent number of peptides as a conventional data-dependent acquisition method but with a 35% smaller work load. Consequently, reduced sample depletion allowed further selection of lower signal-to-noise ratio precursor ions, leading to a larger number of identified unique peptides.


Assuntos
Fragmentos de Peptídeos/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Íons , Fragmentos de Peptídeos/metabolismo , Proteínas/análise , Proteoma/análise
19.
Mol Cell Proteomics ; 8(2): 380-92, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19001347

RESUMO

Transport of solutes between the cytosol and the vacuolar lumen is of crucial importance for various functions of vacuoles, including ion homeostasis; detoxification; storage of different molecules such as amino acids, phosphate, and calcium ions; and proteolysis. To identify proteins that catalyze solute transport across the vacuolar membrane, the membrane proteome of purified Saccharomyces cerevisiae vacuoles was analyzed. Subtractive proteomics was used to distinguish contaminants from true vacuolar proteins by comparing the relative abundances of proteins in pure and crude preparations. A robust statistical analysis combining enrichment ranking with the double boundary iterative group analysis revealed that 148 proteins were significantly enriched in the pure vacuolar preparations. Among these proteins were well characterized vacuolar proteins, such as the subunits of the vacuolar H(+)-ATPase, but also proteins that had not previously been assigned to a cellular location, many of which are likely novel vacuolar membrane transporters, e.g. for nucleosides and oligopeptides. Although the majority of contaminating proteins from other organelles were depleted from the pure vacuolar membranes, some proteins annotated to reside in other cellular locations were enriched along with the vacuolar proteins. In many cases the enrichment of these proteins is biologically relevant, and we discuss that a large group is involved in membrane fusion and protein trafficking to vacuoles and may have multiple localizations. Other proteins are degraded in vacuoles, and in some cases database annotations are likely to be incomplete or incorrect. Our work provides a wealth of information on vacuolar biology and a solid basis for further characterization of vacuolar functions.


Assuntos
Membranas Intracelulares/metabolismo , Proteoma/análise , Proteínas de Saccharomyces cerevisiae/análise , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA