Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 88(7): 4077-4091, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-36921215

RESUMO

Imidazole-based donor-acceptor materials are well known for their polarity-controlled trade-off phenomenon between the localized excitation-based short-wavelength (SW) emission in nonpolar solvents and charge transfer dominated long-wavelength (LW) emission in polar solvents. To attain concurrent SW- and LW-based dual-emission characteristics, a series of imidazole-based donor-acceptor fluorophores (CBImDCN, TPImDCN, PZImDCN) possessing different electron-donating groups such as carbazole, triphenylamine, and phenothiazine linked via the N-position of the imidazole core unit were synthesized and verified by NMR and mass spectroscopic techniques. As a result, the strong donating TPImDCN and PZImDCN exhibited dual emission in different solvents of varying polarity, covering the blue (SW) and green/orange (LW) regions. On the other hand, in contrast, only an SW emission band is observed with the weak donating CBImDCN. Moreover, PZImDCN shows panchromatic emission under 365 nm illumination, while only orange color emission is observed under visible light excitation, revealing two different origins of SW and LW emissions, as also evidenced from DFT calculations. Overall, this work reveals a new approach for attaining concurrent SW and LW emission characteristics from imidazole-based D-A materials and sheds light on the design and development of novel panchromatic emitters with intriguing properties for lighting and display applications.

2.
Chem Rec ; 19(8): 1644-1666, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30462368

RESUMO

Ir(III) metal complexes and related emitters bearing all kind of cyclometalated chromophoric chelates and non-chromophoric ancillary are extensively studied during the past three decades. Many of them have been found to display bright room temperature phosphorescence from triplet excited states in both solution and solid states, offering a possible application in contemporary optoelectronic technologies, including organic light emitting diodes, electrochemiluminescence, biological imaging and chemical sensing. Among reported materials, there are Ir(III) complexes with at least one phosphorus (P)-containing ligand and/or ancillary chelate, together with cyclometalates or equivalents that are in control of the actual emission energy. Particularly, possession of P-based donor can lead to divergent structural and photophysical properties compared to the traditional designs. This review aims to provide a literature overview as well as the authors' personal account to the development of relevant Ir(III) based phosphors bearing these P-donors. To the readers' convenience, the contents are subdivided into six sessions, according to whether or not they are charge natural, or with mono- or dianionic electronic character, and in accordance to their divergent bonding modes, i. e. monodentate, bidentate and tripodal coordination. In many cases, the P-based ancillaries offer an easy accessible route to the formation of efficient sky-blue and true-blue emitters due to their π-accepting property, together with enlarged emission energy gap and destabilized upper lying quenching state.

3.
Chemistry ; 23(12): 2858-2866, 2017 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-28028848

RESUMO

A new series of molecules, T1-T4, possessing thermally activated delayed fluorescence (TADF) have been strategically designed and synthesized. Molecules T1-T4 contain the dimethyl acridine as the electron donor, which is linked to either symmetrical or unsymmetrical diphenyl pyrimidine as an acceptor. In comparison to the ubiquitous triazine acceptor, the selection of pyrimidine as an acceptor has advantages of facile functionalization and less stabilized unoccupied π orbitals, so that the energy gap toward the blue region can be accessed. Together with acridine donors, the resulting donor-acceptor functional materials reveal remarkable TADF properties. In the solid state, molecules T1-T4 all exhibit intriguing mechanochromism. The crystal structures, together with spectroscopy and dynamics acquired upon application of stressing, lead us to propose two types of structural arrangement that give distinct emission properties, one with and the other without TADF. Upon fabricating organic light-emitting diodes, the T1-T4 films prepared from sublimation all exhibit dominant TADF behavior; this accounts for their high performance: an electroluminescent emission at λ=490 nm, with an external quantum efficiency of 14.2 %, can be attained when T2 is used as an emitter.

4.
Chemphyschem ; 16(5): 1035-41, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25656067

RESUMO

Starting from 2,2'-bipyridine dicarboxylic acid, two new (D-π-A)2 sensitizers, including m-DA with the carboxyl anchoring group substituted meta to the donor-bridge moiety and p-DA with a para-substituted anchoring group, were synthesized in order to evaluate the impact of the position of the anchoring group on the optical, electrochemical, and photovoltaic properties of dye-sensitized solar cells. p-DA exhibits red-shifted absorption behavior compared to m-DA, owing to the more efficiently extended π-conjugation with para substitution. Both m-DA and p-DA are adsorbed on the mesoporous TiO2 surface by using both of their carboxylic acid groups in a bianchoring mode, which is confirmed through attenuated total reflectance FTIR analysis. Red-shifted absorption of p-DA assists the achievement of a red-shifted incident photon-to-electron conversion efficiency and a higher short-circuit current density than m-DA. The photogenerated electron lifetime in TiO2 is also found to be higher for para substituted p-DA than the meta-substituted m-DA, which results in a higher open-circuit voltage. All of the results suggest that dicarboxyl-2,2'-bipyridine can be used as an acceptor for metal-free organic sensitizers. However, the anchoring segments should be adjusted to the favorable position of the corresponding donor-bridge moieties for better conjugation.

5.
J Am Chem Soc ; 136(15): 5722-30, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24655036

RESUMO

We report two new molecularly engineered push-pull dyes, i.e., YA421 and YA422, based on substituted quinoxaline as a π-conjugating linker and bulky-indoline moiety as donor and compared with reported IQ4 dye. Benefitting from increased steric hindrance with the introduction of bis(2,4-dihexyloxy)benzene substitution on the quinoxaline, the electron recombination between redox electrolyte and the TiO2 surface is reduced, especially in redox electrolyte employing Co(II/III) complexes as redox shuttles. It was found that the open circuit photovoltages of IQ4, YA421, and YA422 devices with cobalt-based electrolyte are higher than those with iodide/triiodide electrolyte by 34, 62, and 135 mV, respectively. Moreover, the cells employing graphene nanoplatelets on top of gold spattered film as a counter electrode (CE) show lower charge-transfer resistance compared to platinum as a CE. Consequently, YA422 devices deliver the best power conversion efficiency due to higher fill factor, reaching 10.65% at AM 1.5 simulated sunlight. Electrochemical impedance spectroscopy and transient absorption spectroscopy analysis were performed to understand the electrolyte influence on the device performances with different counter electrode materials and donor structures of donor-π-acceptor dyes. Laser flash photolysis experiments indicate that even though the dye regeneration of YA422 is slower than that of the other two dyes, the slower back electron transfer of YA422 contributes to the higher device performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA