Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artif Cells Nanomed Biotechnol ; 52(1): 250-260, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38687561

RESUMO

Despite many recent studies on non-alcoholic fatty liver disease (NAFLD) therapeutics, the optimal treatment has yet to be determined. In this unfinished project, we combined secondary metabolites (SMs) from the gut microbiota (GM) and Hordeum vulgare (HV) to investigate their combinatorial effects via network pharmacology (NP). Additionally, we analyzed GM or barley - signalling pathways - targets - metabolites (GBSTMs) in combinatorial perspectives (HV, and GM). A total of 31 key targets were analysed via a protein-protein interaction (PPI) network, and JUN was identified as the uppermost target in NAFLD. On a bubble plot, we revealed that apelin signalling pathway, which had the lowest enrichment factor antagonize NAFLD. Holistically, we scrutinized GBSTM to identify key components (GM, signalling pathways, targets, and metabolites) associated with the Apelin signalling pathway. Consequently, we found that the primary GMs (Eubacterium limosum, Eggerthella sp. SDG-2, Alistipes indistinctus YIT 12060, Odoribacter laneus YIT 12061, Paraprevotella clara YIT 11840, Paraprevotella xylaniphila YIT 11841) to ameliorate NAFLD. The molecular docking test (MDT) suggested that tryptanthrin-JUN is an agonist, conversely, dihydroglycitein-HDAC5, 1,3-diphenylpropan-2-ol-NOS1, and (10[(Acetyloxy)methyl]-9-anthryl)methyl acetate-NOS2, which are antagonistic conformers in the apelin signalling pathway. Overall, these results suggest that combination therapy could be an effective strategy for treating NAFLD.


Assuntos
Microbioma Gastrointestinal , Hordeum , Hepatopatia Gordurosa não Alcoólica , Hepatopatia Gordurosa não Alcoólica/microbiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hordeum/microbiologia , Hordeum/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Transdução de Sinais/efeitos dos fármacos , Camundongos , Mapas de Interação de Proteínas , Humanos
2.
Clin Transl Sci ; 17(3): e13778, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38515346

RESUMO

Persea americana fruit (PAF) is a favorable nutraceutical resource that comprises diverse unsaturated fatty acids (UFAs). UFAs are significant dietary supplementation, as they relieve metabolic disorders, including obesity (OB). In another aspect, this study was focused on the anti-OB efficacy of the non-fatty acids (NFAs) in PAF through network pharmacology (NP). Natural product activity & species source (NPASS), SwissADME, similarity ensemble approach (SEA), Swiss target prediction (STP), DisGeNET, and online Mendelian inheritance in man (OMIM) were utilized to gather significant molecules and its targets. The crucial targets were adopted to construct certain networks: protein-protein interaction (PPI), PAF-signaling pathways-targets-compounds (PSTC) networks, a bubble chart, molecular docking assay (MDA), and density function theory (DFT). Finally, the toxicities of the key compounds were validated by ADMETlab 2.0 platform. All 41 compounds in PAF conformed to Lipinski's rule, and the key 31 targets were identified between OB and PAF. On the bubble chart, PPAR signaling pathway had the highest rich factor, suggesting that the pathway might be an agonism for anti-OB. Conversely, estrogen signaling pathway had the lowest rich factor, indicating that the mechanism might be antagonism against OB. Likewise, the PSTC network represented that AKT1 had the greatest degree value. The MDA results showed that AKT1-gamma-tocopherol, PPARA-fucosterol, PPARD-stigmasterol, (PPARG)-fucosterol, (NR1H3)-campesterol, and ILK-alpha-tocopherol formed the most stable conformers. The DFT represented that the five molecules might be promising agents via multicomponent targeting. Overall, this study suggests that the NFAs in PAF might play important roles against OB.


Assuntos
Frutas , Persea , Humanos , Simulação de Acoplamento Molecular , Bioensaio , Ácidos Graxos , Obesidade/tratamento farmacológico
3.
Artigo em Inglês | MEDLINE | ID: mdl-38467925

RESUMO

Diarrhea, a common gastrointestinal symptom in health problems, is highly associated with gut dysbiosis. The purpose of this study is to demonstrate the effect of multistrain probiotics (Sensi-Biome) on diarrhea from the perspective of the microbiome-neuron axis. Sensi-Biome (Lactiplantibacillus plantarum, Bifidobacterium animalis subsp. lactis, Lactobacillus acidophilus, Streptococcus thermophilus, Bifidobacterium bifidum, and Lactococcus lactis) was administered in a 4% acetic acid-induced diarrhea rat model at concentrations of 1 × 108 (G1), 1 × 109 (G2), and 1 × 1010 CFU/0.5 mL (G3). Diarrhea-related parameters, inflammation-related cytokines, and stool microbiota analysis by 16S rRNA were evaluated. A targeted and untargeted metabolomics approach was used to analyze the cecum samples using liquid chromatography and orbitrap mass spectrometry. The stool moisture content (p < 0.001), intestinal movement rate (p < 0.05), and pH (p < 0.05) were significantly recovered in G3. Serotonin levels were decreased in the multistrain probiotics groups. The inflammatory cytokines, serotonin, and tryptophan hydroxylase expression were improved in the Sensi-Biome groups. At the phylum level, Sensi-Biome showed the highest relative abundance of Firmicutes. Short-chain fatty acids including butyrate, iso-butyrate, propionate, and iso-valeric acid were significantly modified in the Sensi-Biome groups. Equol and oleamide were significantly improved in the multistrain probiotics groups. In conclusion, Sensi-Biome effectively controls diarrhea by modulating metabolites and the serotonin pathway.

4.
ACS Appl Mater Interfaces ; 16(8): 9736-9748, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38349780

RESUMO

Polymeric micelles have been extensively studied as vectors for the delivery of hydrophobic drugs for the treatment of cancers and other diseases. Despite intensive research, few formulations provide significant benefits, and even fewer have been clinically approved. While many traditional non-responsive micelles have excellent safety profiles, they lack the ability to respond to the intracellular environment and release their cargo in a spatiotemporally defined manner to effectively deliver large doses of cytotoxic drugs into the cytosol of cells that overwhelm efflux pumps. As a novel and adaptable strategy, we hypothesized that well-established non-responsive polymeric micelles could be augmented with a pH-trigger via the co-encapsulation of cytocompatible oligoelectrolytes, which would allow rapid cargo release in the endosome, leading to increased cytotoxicity. Herein, we demonstrate how this strategy can be applied to render non-responsive micelles pH-responsive, resulting in abrupt cargo release at specific and tunable pH values compatible with endosomal delivery, which significantly increased their cytotoxicity up to 3-fold in an ovarian adenocarcinoma (SKOV-3) cell line compared to non-responsive micelles. In comparison, the oligoelectrolyte-loaded micelles were significantly less toxic to healthy 3T3 fibroblasts, indicating a selective cargo release in cancer cell lines. Oligoelectrolytes can be co-encapsulated in the micelles along with drugs at high encapsulation efficiency percentages, which are both ejected from the micelle core upon oligoelectrolyte ionization. Mechanistically, the increase in cytotoxicity appears to also result from the accelerated endosomal escape of the cargo caused by disruption of the endosomal membrane by the simultaneous release of the oligoelectrolytes from the micelles. Furthermore, we show how this approach is broadly applicable to non-responsive micelles regardless of their composition and various classes of hydrophobic chemotherapeutics. The preliminary studies presented here reveal the versatility and wide scope of oligoelectrolyte-mediated, pH-triggered drug release as a compelling and powerful strategy to enhance the cytotoxicity of non-responsive polymeric micelles.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Micelas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Portadores de Fármacos/química , Polímeros/química , Neoplasias/tratamento farmacológico , Concentração de Íons de Hidrogênio , Liberação Controlada de Fármacos , Doxorrubicina/química
5.
EMBO Rep ; 25(2): 704-724, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38263327

RESUMO

TFEB is a master regulator of autophagy, lysosome biogenesis, mitochondrial metabolism, and immunity that works primarily through transcription controlled by cytosol-to-nuclear translocation. Emerging data indicate additional regulatory interactions at the surface of organelles such as lysosomes. Here we show that TFEB has a non-transcriptional role in mitochondria, regulating the electron transport chain complex I to down-modulate inflammation. Proteomics analysis reveals extensive TFEB co-immunoprecipitation with several mitochondrial proteins, whose interactions are disrupted upon infection with S. Typhimurium. High resolution confocal microscopy and biochemistry confirms TFEB localization in the mitochondrial matrix. TFEB translocation depends on a conserved N-terminal TOMM20-binding motif and is enhanced by mTOR inhibition. Within the mitochondria, TFEB and protease LONP1 antagonistically co-regulate complex I, reactive oxygen species and the inflammatory response. Consequently, during infection, lack of TFEB specifically in the mitochondria exacerbates the expression of pro-inflammatory cytokines, contributing to innate immune pathogenesis.


Assuntos
Autofagia , Inflamação , Humanos , Inflamação/metabolismo , Citosol/metabolismo , Transporte Ativo do Núcleo Celular , Lisossomos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas Mitocondriais/metabolismo , Proteases Dependentes de ATP/metabolismo
6.
Int J Pharm ; 651: 123790, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38190951

RESUMO

Adjuvant chemotherapy is highly recommended for liver cancer to enhance survival rates due to its tendency to recur frequently. Localized drug-eluting implants have gained traction as an alternative to overcome the limitations of systemic chemotherapy. This work describes the development of biodegradable 3D printed (3DP) bilayer films loaded with 5-fluorouracil (5FU) and cisplatin (Cis) with different infill percentages where the 5FU layers were 40%, 30%, and 30% and Cis layers were 10%, 15%, and 10% for films A, B, and C, respectively. The relevant characterization tests were performed, and the drug content of films was 0.68, 0.50, and 0.50 mg of 5FU and 0.39, 0.80, and 0.34 mg of Cis for films A, B, and C, respectively. Cis release was affected by the alterations to the film design, where films A, B, and C showed complete release at 12, 14, and 23 days, respectively. However, 5FU was released over 24 h for all films. The films were stable for up to two weeks after storage at 25 °C/65% relative humidity and four weeks at 4 °C where drug content, tensile strength, FTIR, and thermal analysis results demonstrated negligible alterations. The cytotoxicity of the films was assessed by MTS assays using HepG2 cell lines demonstrating up to 81% reduction in cell viability compared to blank films. Moreover, apoptosis was confirmed by Western Blots and the determination of mitochondrial cell potential, highlighting the potential of these films as a promising approach in adjuvant chemotherapy.


Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias Hepáticas , Humanos , Sistemas de Liberação de Medicamentos/métodos , Fluoruracila , Neoplasias Hepáticas/tratamento farmacológico , Apoptose , Cisplatino , Impressão Tridimensional
7.
Hepatol Int ; 18(2): 486-499, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37000389

RESUMO

BACKGROUND AND AIM: The prevalence and severity of alcoholic liver disease (ALD) are increasing. The incidence of alcohol-related cirrhosis has risen up to 2.5%. This study aimed to identify novel metabolite mechanisms involved in the development of ALD in patients. The use of gut microbiome-derived metabolites is increasing in targeted therapies. Identifying metabolic compounds is challenging due to the complex patterns that have long-term effects on ALD. We investigated the specific metabolite signatures in ALD patients. METHODS: This study included 247 patients (heathy control, HC: n = 62, alcoholic fatty liver, AFL; n = 25, alcoholic hepatitis, AH; n = 80, and alcoholic cirrhosis, AC, n = 80) identified, and stool samples were collected. 16S rRNA sequencing and metabolomics were performed with MiSeq sequencer and liquid chromatography coupled to time-of-flight-mass spectrometry (LC-TOF-MS), respectively. The untargeted metabolites in AFL, AH, and AC samples were evaluated by multivariate statistical analysis and metabolic pathotypic expression. Metabolic network classifiers were used to predict the pathway expression of the AFL, AH, and AC stages. RESULTS: The relative abundance of Proteobacteria was increased and the abundance of Bacteroides was decreased in ALD samples (p = 0.001) compared with that in HC samples. Fusobacteria levels were higher in AH samples (p = 0.0001) than in HC samples. Untargeted metabolomics was applied to quantitatively screen 103 metabolites from each stool sample. Indole-3-propionic acid levels are significantly lower in AH and AC (vs. HC, p = 0.001). Indole-3-lactic acid (ILA: p = 0.04) levels were increased in AC samples. AC group showed an increase in indole-3-lactic acid (vs. HC, p = 0.040) level. Compared with that in HC samples, the levels of short-chain fatty acids (SCFAs: acetic acid, butyric acid, propionic acid, iso-butyric acid, and iso-valeric acid) and bile acids (lithocholic acids) were significantly decreased in AC. The pathways of linoleic acid metabolism, indole compounds, histidine metabolism, fatty acid degradation, and glutamate metabolism were closely associated with ALD metabolism. CONCLUSIONS: This study identified that microbial metabolic dysbiosis is associated with ALD-related metabolic dysfunction. The SCFAs, bile acids, and indole compounds were depleted during ALD progression. CLINICAL TRIAL: Clinicaltrials.gov, number NCT04339725.


Assuntos
Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Humanos , Propionatos , RNA Ribossômico 16S/genética , Cirrose Hepática Alcoólica , Indóis , Ácidos e Sais Biliares
8.
Artigo em Inglês | MEDLINE | ID: mdl-38061618

RESUMO

Silica nanoparticles (SNPs) are widely explored as drug carriers, gene delivery vehicles, and as nanoparticles intended for bone and tissue engineering. SNPs are highly evident through various clinical trials for a wide range of biomedical applications. SNPs are biocompatible and promising nanoparticles for next-generation therapeutics. However, despite the well-established importance of SNPs, metabolomics methods for the SNPs remain elusive which renders its maximal clinical translation. We applied 1H nuclear magnetic resonance (1H NMR) spectroscopy to investigate the metabolomics profile in Zebrafish (Danio rerio) exposed to SNPs. Zebrafish were exposed to the SNPs (10.0, 25.0, and 50.0 µg/mL) for 72 h and whole-body samples were subjected for targeted profiling. Pattern recognition of 1H NMR spectral data depicted alterations in the metabolomic profiles between control and SNPs exposed zebrafish. We found that tryptophane, lysine, methionine, phenylalanine, tyrosine, sn-glycero-3-phosphocholine (G3PC), and o-phosphocholine were decreased. The metabolic expression of niacinamide, nicotinamide adenine dinucleotide (NAD+), citrate, adenosine triphosphate (ATP), and xanthine were increased in zebrafish with SNPs treatment. We are report for the first time on metabolite alterations and phenotypic expression in zebrafish via 1H NMR. These results demonstrate that SNPs can adversely affect the significant metabolic pathways involved in energy, amino acids, cellular membrane, lipids, and fatty acid metabolisms. Metabolomics profiling may be able to detect metabolic dysregulation in SNPs-treated zebrafish and establish a foundation for further toxicological studies.


Assuntos
Fosforilcolina , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Fosforilcolina/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Metabolômica/métodos
10.
Med Oncol ; 40(8): 220, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402029

RESUMO

Regardless of the significant progress made in surgical techniques and adjuvant therapies, brain tumors are a major contributor to cancer-related morbidity and mortality in both pediatric and adult populations. Gliomas represent a significant proportion of cerebral neoplasms, exhibiting diverse levels of malignancy. The etiology and mechanisms of resistance of this malignancy are inadequately comprehended, and the optimization of patient diagnosis and prognosis is a challenge due to the diversity of the disease and the restricted availability of therapeutic options. Metabolomics refers to the comprehensive analysis of endogenous and exogenous small molecules, both in a targeted and untargeted manner, that enables the characterization of an individual's phenotype and offers valuable insights into cellular activity, particularly in the context of cancer biology, including brain tumor biology. Metabolomics has garnered attention in current years due to its potential to facilitate comprehension of the dynamic spatiotemporal regulatory network of enzymes and metabolites that enables cancer cells to adapt to their environment and foster the development of tumors. Metabolic changes are widely acknowledged as a significant characteristic for tracking the advancement of diseases, treatment efficacy, and identifying novel molecular targets for successful medical management. Metabolomics has emerged as an exciting area for personalized medicine and drug discovery, utilizing advanced analytical techniques such as nuclear magnetic resonance spectroscopy (MRS) and mass spectrometry (MS) to achieve high-throughput analysis. This review examines and highlights the latest developments in MRS, MS, and other technologies in studying human brain tumor metabolomics.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Criança , Metaboloma , Metabolômica/métodos , Espectrometria de Massas/métodos
11.
Life Sci ; 328: 121913, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37414140

RESUMO

Epicardial adipose tissue (EAT) has morphological and physiological contiguity with the myocardium and coronary arteries, making it a visceral fat deposit with some unique properties. Under normal circumstances, EAT exhibits biochemical, mechanical, and thermogenic cardioprotective characteristics. Under clinical processes, epicardial fat can directly impact the heart and coronary arteries by secreting proinflammatory cytokines via vasocrine or paracrine mechanisms. It is still not apparent what factors affect this equilibrium. Returning epicardial fat to its physiological purpose may be possible by enhanced local vascularization, weight loss, and focused pharmacological therapies. This review centers on EAT's developing physiological and pathophysiological dimensions and its various and pioneering clinical utilities.


Assuntos
Tecido Adiposo , Pericárdio , Tecido Adiposo/fisiologia , Miocárdio , Citocinas , Vasos Coronários
12.
Front Microbiol ; 14: 1174968, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333632

RESUMO

Constipation is one of the most common gastrointestinal (GI) disorders worldwide. The use of probiotics to improve constipation is well known. In this study, the effect on loperamide-induced constipation by intragastric administration of probiotics Consti-Biome mixed with SynBalance® SmilinGut (Lactobacillus plantarum PBS067, Lactobacillus rhamnosus LRH020, Bifidobacterium animalis subsp. lactis BL050; Roelmi HPC), L. plantarum UALp-05 (Chr. Hansen), Lactobacillus acidophilus DDS-1 (Chr. Hansen), and Streptococcus thermophilus CKDB027 (Chong Kun Dang Bio) to rats was evaluated. To induce constipation, 5 mg/kg loperamide was intraperitoneally administered twice a day for 7 days to all groups except the normal control group. After inducing constipation, Dulcolax-S tablets and multi-strain probiotics Consti-Biome were orally administered once a day for 14 days. The probiotics were administered 0.5 mL at concentrations of 2 × 108 CFU/mL (G1), 2 × 109 CFU/mL (G2), and 2 × 1010 CFU/mL (G3). Compared to the loperamide administration group (LOP), the multi-strain probiotics not only significantly increased the number of fecal pellets but also improved the GI transit rate. The mRNA expression levels of serotonin- and mucin-related genes in the colons that were treated with the probiotics were also significantly increased compared to levels in the LOP group. In addition, an increase in serotonin was observed in the colon. The cecum metabolites showed a different pattern between the probiotics-treated groups and the LOP group, and an increase in short-chain fatty acids was observed in the probiotic-treated groups. The abundances of the phylum Verrucomicrobia, the family Erysipelotrichaceae and the genus Akkermansia were increased in fecal samples of the probiotic-treated groups. Therefore, the multi-strain probiotics used in this experiment were thought to help alleviate LOP-induced constipation by altering the levels of short-chain fatty acids, serotonin, and mucin through improvement in the intestinal microflora.

13.
Pathogens ; 12(6)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37375460

RESUMO

Infection with viruses, bacteria, and parasites are thought to be the underlying cause of about 8-17% of the world's cancer burden, i.e., approximately one in every five malignancies globally is caused by an infectious pathogen. Oncogenesis is thought to be aided by eleven major pathogens. It is crucial to identify microorganisms that potentially act as human carcinogens and to understand how exposure to such pathogens occur as well as the following carcinogenic pathways they induce. Gaining knowledge in this field will give important suggestions for effective pathogen-driven cancer care, control, and, ultimately, prevention. This review will mainly focus on the major onco-pathogens and the types of cancer caused by them. It will also discuss the major pathways which, when altered, lead to the progression of these cancers.

14.
Biomed Pharmacother ; 163: 114832, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37150032

RESUMO

Several proteins and peptides have therapeutic potential and can be used for cancer therapy. By binding to cell surface receptors and other indicators uniquely linked with or overexpressed on tumors compared to healthy tissue, protein biologics enhance the active targeting of cancer cells, as opposed to the passive targeting of cells by conventional small-molecule chemotherapeutics. This study focuses on peptide medications that exist to slow or stop tumor growth and the spread of cancer, demonstrating the therapeutic potential of peptides in cancer treatment. As an alternative to standard chemotherapy, peptides that selectively kill cancer cells while sparing healthy tissue are developing. A mountain of clinical evidence supports the efficacy of peptide-based cancer vaccines. Since a single treatment technique may not be sufficient to produce favourable results in the fight against cancer, combination therapy is emerging as an effective option to generate synergistic benefits. One example of this new area is the use of anticancer peptides in combination with nonpeptidic cytotoxic drugs or the combination of immunotherapy with conventional therapies like radiation and chemotherapy. This review focuses on the different natural and synthetic peptides obtained and researched. Discoveries, manufacture, and modifications of peptide drugs, as well as their contemporary applications, are summarized in this review. We also discuss the benefits and difficulties of potential advances in therapeutic peptides.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Peptídeos/uso terapêutico , Proteínas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Imunoterapia/métodos
15.
Artif Cells Nanomed Biotechnol ; 51(1): 217-232, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37129458

RESUMO

We comprised metabolites of gut microbiota (GM; endogenous species) and dietary plant-derived natural flavonoids (DPDNFs; exogenous species) were known as potent effectors against non-alcoholic fatty liver disease (NAFLD) via network pharmacology (NP). The crucial targets against NAFLD were identified via GM and DPDNFs. The protein interaction (PPI), bubble chart and networks of GM or natural products- metabolites-targets-key signalling (GNMTK) pathway were described via R Package. Furthermore, the molecular docking test (MDT) to verify the affinity was performed between metabolite(s) and target(s) on a key signalling pathway. On the networks of GNMTK, Enterococcus sp. 45, Escherichia sp.12, Escherichia sp.33 and Bacterium MRG-PMF-1 as key microbiota; flavonoid-rich products as key natural resources; luteolin and myricetin as key metabolites (or dietary flavonoids); AKT Serine/Threonine Kinase 1 (AKT1), CF Transmembrane conductance Regulator (CFTR) and PhosphoInositide-3-Kinase, Regulatory subunit 1 (PIK3R1) as key targets are promising components to treat NAFLD, by suppressing cyclic Adenosine MonoPhosphate (cAMP) signalling pathway. This study shows that components (microbiota, metabolites, targets and a key signalling pathway) and DPDNFs can exert combinatorial pharmacological effects against NAFLD. Overall, the integrated pharmacological approach sheds light on the relationships between GM and DPDNFs.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Simulação de Acoplamento Molecular , Farmacologia em Rede , Flavonoides/farmacologia
16.
J Transl Med ; 21(1): 263, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069607

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a serious public health issue globally, currently, the treatment of NAFLD lies still in the labyrinth. In the inchoate stage, the combinatorial application of food regimen and favorable gut microbiota (GM) are considered as an alternative therapeutic. Accordingly, we integrated secondary metabolites (SMs) from GM and Avena sativa (AS) known as potent dietary grain to identify the combinatorial efficacy through network pharmacology. METHODS: We browsed the SMs of AS via Natural Product Activity & Species Source (NPASS) database and SMs of GM were retrieved by gutMGene database. Then, specific intersecting targets were identified from targets related to SMs of AS and GM. The final targets were selected on NAFLD-related targets, which was considered as crucial targets. The protein-protein interaction (PPI) networks and bubble chart analysis to identify a hub target and a key signaling pathway were conducted, respectively. In parallel, we analyzed the relationship of GM or AS─a key signaling pathway─targets─SMs (GASTM) by merging the five components via RPackage. We identified key SMs on a key signaling pathway via molecular docking assay (MDA). Finally, the identified key SMs were verified the physicochemical properties and toxicity in silico platform. RESULTS: The final 16 targets were regarded as critical proteins against NAFLD, and Vascular Endothelial Growth Factor A (VEGFA) was a key target in PPI network analysis. The PI3K-Akt signaling pathway was the uppermost mechanism associated with VEGFA as an antagonistic mode. GASTM networks represented 122 nodes (60 GM, AS, PI3K-Akt signaling pathway, 4 targets, and 56 SMs) and 154 edges. The VEGFA-myricetin, or quercetin, GSK3B-myricetin, IL2-diosgenin complexes formed the most stable conformation, the three ligands were derived from GM. Conversely, NR4A1-vestitol formed stable conformation with the highest affinity, and the vestitol was obtained from AS. The given four SMs were no hurdles to develop into drugs devoid of its toxicity. CONCLUSION: In conclusion, we show that combinatorial application of AS and GM might be exerted to the potent synergistic effects against NAFLD, dampening PI3K-Akt signaling pathway. This work provides the importance of dietary strategy and beneficial GM on NAFLD, a data mining basis for further explicating the SMs and pharmacological mechanisms of combinatorial application (AS and GM) against NAFLD.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Avena , Simulação de Acoplamento Molecular , Farmacologia em Rede , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fator A de Crescimento do Endotélio Vascular
17.
Life Sci ; 322: 121626, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37003543

RESUMO

AIMS: Nonalcoholic fatty liver disease (NAFLD) is becoming more common and severe. Individuals with NAFLD have an altered composition of gut- microbial metabolites. We used metabolomics profiling to identify microbial metabolites that could indicate gut-liver metabolic severity. Noninvasive biomarkers are required for NAFLD, especially for patients at high risk of disease progression. MAIN METHODS: We compared the stool metabolomes, untargeted metabolomics, and clinical data of 80 patients. Patients with nonalcoholic fatty liver (NAFL: n = 16), nonalcoholic steatohepatitis (NASH: n = 26), and cirrhosis (n = 19) and healthy control individuals (HC: n = 19) were enrolled. The identified metabolites in NAFLD were evaluated by multivariate statistical analysis and metabolic pathotypic expression. Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography coupled to time-of-flight-mass spectrometry (LC-TOF-MS) were used to analyze metabolites. KEY FINDINGS: Untargeted metabolomics was used to identify and quantify 103 metabolites. Principal component analysis (PCA) was used to assess the metabolic discrimination of NAFL, NASH, and cirrhosis. Short-chain fatty acids (SCFA) levels were significantly lower in NAFLD patients, including those of acetate (p = 0.03), butyrate (p = 0.0008), and propionate. The stool cholic acid (p = 0.001) level was significantly increased in NAFLD patients. Palmitoylcarnitine and l-carnitine levels were significantly increased in NASH and cirrhosis patients. The phenotypic expression of these metabolites was linked to ß-oxidation. SIGNIFICANCE: We demonstrated a distinct metabolome profile in NAFLD patients with NAFL, NASH, and cirrhosis. We also discovered that the expression of certain metabolites and metabolic pathways was linked to NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metabolômica/métodos , Fenótipo , Biomarcadores/metabolismo , Cirrose Hepática
18.
Molecules ; 28(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36903635

RESUMO

Mosquitoes are the potential vectors of several viral diseases such as filariasis, malaria, dengue, yellow fever, Zika fever and encephalitis in humans as well as other species. Dengue, the most common mosquito-borne disease in humans caused by the dengue virus is transmitted by the vector Ae. aegypti. Fever, chills, nausea and neurological disorders are the frequent symptoms of Zika and dengue. Thanks to various anthropogenic activities such as deforestation, industrialized farming and poor drainage facilities there has been a significant rise in mosquitoes and vector-borne diseases. Control measures such as the destruction of mosquito breeding places, a reduction in global warming, as well as the use of natural and chemical repellents, mainly DEET, picaridin, temephos and IR-3535 have proven to be effective in many instances. Although potent, these chemicals cause swelling, rashes, and eye irritation in adults and children, and are also toxic to the skin and nervous system. Due to their shorter protection period and harmful nature towards non-target organisms, the use of chemical repellents is greatly reduced, and more research and development is taking place in the field of plant-derived repellents, which are found to be selective, biodegradable and harmless to non-target species. Many tribal and rural communities across the world have been using plant-based extracts since ancient times for various traditional and medical purposes, and to ward off mosquitoes and various other insects. In this regard, new species of plants are being identified through ethnobotanical surveys and tested for their repellency against Ae. aegypti. This review aims to provide insight into many such plant extracts, essential oils and their metabolites, which have been tested for their mosquitocidal activity against different life cycle forms of Ae. Aegypti, as well as for their efficacy in controlling mosquitoes.


Assuntos
Aedes , Dengue , Repelentes de Insetos , Inseticidas , Infecção por Zika virus , Zika virus , Adulto , Animais , Criança , Humanos , Mosquitos Vetores , Insetos , Repelentes de Insetos/farmacologia , Extratos Vegetais/farmacologia , Inseticidas/farmacologia , Larva
19.
Vaccines (Basel) ; 11(3)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36992094

RESUMO

COVID-19 has become a significant public health concern that has catastrophic consequences for society. Some preliminary evidence suggests that the male reproductive system may be an infection target for SARS-CoV-2. SARS-CoV-2 may be transmitted sexually, according to preliminary research. Testicular cells exhibit a high level of the angiotensin-converting enzyme 2 (ACE2) receptor, which enhances the entry of the SARS-CoV-2 into host cells. Some instances of COVID-19 have been documented to exhibit hypogonadism during the acute stage. Furthermore, systemic inflammatory reactions triggered by SARS-CoV-2 infection may cause oxidative stress (OS), which has been shown to have profoundly deleterious consequences on testicular functioning. This work gives a clear picture of how COVID-19 may affect male reproductive systems and calls attention to the many unanswered questions about the mechanisms by which this virus can be linked to men's health and fertility.

20.
Metabolites ; 13(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36837801

RESUMO

Prostate cancer (PCa) is the common cause of death in men. The pathophysiological factors contributing to PCa are not well known. PCa cells gain a protective mechanism via abnormal lipid signaling and metabolism. PCa cells modify their metabolism in response to an excessive intake of nutrients to facilitate advancement. Metabolic syndrome (MetS) is inextricably linked to the carcinogenic progression of PCa, which heightens the severity of the disease. It is hypothesized that changes in the metabolism of the mitochondria contribute to the onset of PCa. The studies of particular alterations in the progress of PCa are best accomplished by examining the metabolome of prostate tissue. Due to the inconsistent findings written initially, additional epidemiological research is required to identify whether or not MetS is an aspect of PCa. There is a correlation between several risk factors and the progression of PCa, one of which is MetS. The metabolic symbiosis between PCa cells and the tumor milieu and how this type of crosstalk may aid in the development of PCa is portrayed in this work. This review focuses on in-depth analysis and evaluation of the metabolic changes that occur within PCa, and also aims to assess the effect of metabolic abnormalities on the aggressiveness status and metabolism of PCa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA