Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
medRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38645225

RESUMO

Pyruvate dehydrogenase complex deficiency (PDCD) is a disorder of mitochondrial metabolism that is caused by pathogenic variants in multiple genes, including PDHA1. Typical neonatal brain imaging findings in PDCD have been described, with a focus on malformative features and chronic encephaloclastic changes. However, fetal brain MRI imaging in confirmed PDCD has not been comprehensively described. We sought to demonstrate the prenatal neurological and systemic manifestations of PDCD determined by comprehensive fetal imaging and genomic sequencing. All fetuses with a diagnosis of genetic PDCD who had undergone fetal MRI were included in the study. Medical records, imaging data, and genetic testing results were reviewed and reported descriptively. Ten patients with diagnosis of PDCD were included. Most patients had corpus callosum dysgenesis, abnormal gyration pattern, reduced brain volumes, and periventricular cystic lesions. One patient had associated intraventricular hemorrhages. One patient had a midbrain malformation with aqueductal stenosis and severe hydrocephalus. Fetuses imaged in the second trimester were found to have enlargement of the ganglionic eminences with cystic cavitations, while those imaged in the third trimester had germinolytic cysts. Fetuses with PDCD have similar brain MRI findings to neonates described in the literature, although some of these findings may be subtle early in pregnancy. Additional features, such as cystic cavitations of the ganglionic eminences, are noted in the second trimester in fetuses with PDCD, and these may represent a novel early diagnostic marker for PDCD. Using fetal MRI to identify these radiological hallmarks to inform prenatal diagnosis of PDCD may guide genetic counseling, pregnancy decision-making, and neonatal care planning.

2.
J Mass Spectrom Adv Clin Lab ; 31: 49-58, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38375486

RESUMO

Objectives: Ketone bodies (KBs) serve as important energy sources that spare glucose, providing the primary energy for cardiac muscle, skeletal muscle during aerobic exercise, and the brain during periods of catabolism. The levels and relationships between the KBs are critical indicators of metabolic health and disease. However, challenges in separating isomeric KBs and concerns about sample stability have previously limited their clinical measurement. Methods: A novel 6.5-minute liquid chromatography-mass spectrometry-based assay was developed, enabling the precise measurement of alpha-, beta- and gamma-hydroxybutyrate, beta-hydroxyisobutyrate, and acetoacetate. This method was fully validated for human serum and plasma samples by investigating extraction efficiency, matrix effects, accuracy, recovery, intra- and inter-precision, linearity, lower limit of quantitation (LLOQ), carryover, specificity, stability, and more. From 107 normal samples, reference ranges were established for all analytes and the beta-hydroxybutyrate/acetoacetate ratio. Results: All five analytes were adequately separated chromatographically. An extraction efficiency between 80 and 120 % was observed for all KBs. Accuracy was evaluated through spike and recovery using 10 random patient samples, with an average recovery of 85-115 % for all KBs and a coefficient of variation of ≤ 3 %. Coefficients of variation for intra- and inter-day imprecision were < 5 %, and the total imprecision was < 10 %. No significant interferences were observed. Specimens remained stable for up to 6 h on ice or 2 h at room temperature. Conclusions: The developed method is highly sensitive and robust. It has been validated for use with human serum and plasma, overcoming stability concerns and providing a reliable and efficient quantitative estimation of ketone bodies.

4.
Mol Genet Metab ; 140(1-2): 107710, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37903659

RESUMO

Iron­sulfur clusters (FeS) are one of the most primitive and ubiquitous cofactors used by various enzymes in multiple pathways. Biosynthesis of FeS is a complex multi-step process that is tightly regulated and requires multiple machineries. IBA57, along with ISCA1 and ISCA2, play a role in maturation of [4Fe-4S] clusters which are required for multiple mitochondrial enzymes including mitochondrial Complex I, Complex II, lipoic acid synthase, and aconitase. Pathogenic variants in IBA57 have been associated with multiple mitochondrial dysfunctions syndrome 3 (MMDS3) characterized by infantile to early childhood-onset psychomotor regression, optic atrophy and nonspecific dysmorphism. Here we report a female proband who had prenatal involvement including IUGR and microcephaly and developed subacute psychomotor regression at the age of 5 weeks in the setting of preceding viral infection. Brain imaging revealed cortical malformation with polymicrogyria and abnormal signal alteration in brainstem and spinal cord. Biochemical analysis revealed increased plasma glycine and hyperexcretion of multiple organic acids in urine, raising the concern for lipoic acid biosynthesis defects and mitochondrial FeS assembly defects. Molecular analysis subsequently detected compound heterozygous variants in IBA57, confirming the diagnosis of MMDS3. Although the number of MMDS3 patients are limited, certain degree of genotype-phenotype correlation has been observed. Unusual brain imaging in the proband highlights the need to include mitochondrial disorders as differential diagnoses of structural brain abnormalities. Lastly, in addition to previously known biomarkers including high blood lactate and plasma glycine levels, the increase of 2-hydroxyadipic and 2-ketoadipic acids in urine organic acid analysis, in the appropriate clinical context, should prompt an evaluation for the lipoic acid biosynthesis defects and mitochondrial FeS assembly defects.


Assuntos
Proteínas Ferro-Enxofre , Doenças Mitocondriais , Ácido Tióctico , Humanos , Pré-Escolar , Feminino , Lactente , Lisina/metabolismo , Triptofano/metabolismo , Proteínas Ferro-Enxofre/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Biomarcadores/metabolismo , Glicina/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte/genética
5.
JIMD Rep ; 64(5): 367-374, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37701333

RESUMO

Dihydrolipoamide dehydrogenase (DLD; E3) oxidizes lipoic acid. Restoring the oxidized state allows lipoic acid to act as a necessary electron sink for the four mitochondrial keto-acid dehydrogenases: pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase, branched-chain α-keto-acid dehydrogenase, and 2-oxoadipate dehydrogenase. DLD deficiency (DLDD) is caused by biallelic pathogenic variants in DLD. Three major forms have been described: encephalopathic, hepatic, and myopathic, although DLDD patients exhibit overlapping phenotypes. Hyperlactatemia, hyperexcretion of tricarboxylic acid cycle (TCA) metabolites and branched-chain keto acids, increased plasma branched-chain amino acids and allo-isoleucine are intermittent metabolic abnormalities reported in patients with DLDD. However, the diagnostic performance of these metabolites has never been studied. Therefore, we sought to systematically evaluate the diagnostic utility of these biomarkers for DLDD. We retrospectively analyzed the results of biochemical testing of six unrelated DLDD patients, including values obtained during both well visits and acute decompensation episodes. Elevation of branched-chain amino acid concentrations was not consistently observed. We found that five of six patients in our cohort had a maximum lifetime value of allo-isoleucine of 6 µmol/L, showing that alloisoleucine elevations even during illness may be subtle. Urine organic acid analysis (UOA) during acute decompensation episodes was abnormal in all cases; however, the pattern of abnormalities had high intersubject variability. No single biomarker was universally present, even in patients experiencing metabolic decompensation. We also observed novel biochemical associations: three patients had hyperexcretion of TCA cycle metabolites during crisis; in two patients, 2-ketoadipic and 2-hydroxyadipic acids, by products of lysine degradation, were detected. We propose that these result from 2-oxoadipate dehydrogenase deficiency, an underappreciated biochemical abnormality in DLD. Given the diversity of biochemical profiles among the patients with DLDD, we conclude that accurate biochemical diagnosis relies on a high index of suspicion and multipronged biochemical analysis, including both plasma amino acid and urine organic acid quantitation during decompensation. Biochemical diagnosis during the well state is challenging. We emphasize the critical importance of multiple simultaneous biochemical tests for diagnosis and monitoring of DLDD. We also highlight the under-recognized role of DLD in the lysine degradation pathway. Larger cohorts of patients are needed to establish a correlation between the biochemical pattern and clinical outcomes, as well as a genotype-phenotype correlation.

6.
Mol Syndromol ; 14(4): 303-309, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37589028

RESUMO

Background: Pallister-Killian syndrome (PKS) is typically recognized by its features that include developmental delay, seizures, sparse temporal hair, and facial dysmorphisms. PKS is most frequently caused by mosaic supernumerary isochromosome 12p. Case Presentation: Here, we report a patient with PKS who was subsequently diagnosed with Burkitt lymphoma. Following the successful treatment of lymphoma, this patient demonstrated very mild intellectual disability despite the diagnosis of PKS, which is usually associated with severe developmental delay. Discussion: This is the first reported patient with PKS and a hematologic malignancy. Although there is no significant reported association of tetrasomy 12p with cancer, the co-occurrence of two rare findings in this patient suggests a potential relationship. The localization of AICDA, a gene for which overexpression has been implicated in promoting t(8;14) noted in our patient's lymphoma, raises a potential mechanism of pathogenesis. In addition, this case indicates that children with PKS can demonstrate near-normal cognitive development.

9.
Clin Chem ; 69(6): 564-582, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37099687

RESUMO

BACKGROUND: Mitochondria are cytosolic organelles within most eukaryotic cells. Mitochondria generate the majority of cellular energy in the form of adenosine triphosphate (ATP) through oxidative phosphorylation (OxPhos). Pathogenic variants in mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) lead to defects in OxPhos and physiological malfunctions (Nat Rev Dis Primer 2016;2:16080.). Patients with primary mitochondrial disorders (PMD) experience heterogeneous symptoms, typically in multiple organ systems, depending on the tissues affected by mitochondrial dysfunction. Because of this heterogeneity, clinical diagnosis is challenging (Annu Rev Genomics Hum Genet 2017;18:257-75.). Laboratory diagnosis of mitochondrial disease depends on a multipronged analysis that can include biochemical, histopathologic, and genetic testing. Each of these modalities has complementary strengths and limitations in diagnostic utility. CONTENT: The primary focus of this review is on diagnosis and testing strategies for primary mitochondrial diseases. We review tissue samples utilized for testing, metabolic signatures, histologic findings, and molecular testing approaches. We conclude with future perspectives on mitochondrial testing. SUMMARY: This review offers an overview of the current biochemical, histologic, and genetic approaches available for mitochondrial testing. For each we review their diagnostic utility including complementary strengths and weaknesses. We identify gaps in current testing and possible future avenues for test development.


Assuntos
Mitocôndrias , Doenças Mitocondriais , Humanos , Transporte de Elétrons , Mitocôndrias/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , DNA Mitocondrial/genética , Fosforilação Oxidativa
10.
Genet Med ; 25(2): 100332, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36520152

RESUMO

PURPOSE: This study aimed to establish the genetic cause of a novel autosomal recessive neurodevelopmental disorder characterized by global developmental delay, movement disorder, and metabolic abnormalities. METHODS: We performed a detailed clinical characterization of 4 unrelated individuals from consanguineous families with a neurodevelopmental disorder. We used exome sequencing or targeted-exome sequencing, cosegregation, in silico protein modeling, and functional analyses of variants in HEK293 cells and Drosophila melanogaster, as well as in proband-derived fibroblast cells. RESULTS: In the 4 individuals, we identified 3 novel homozygous variants in oxoglutarate dehydrogenase (OGDH) (NM_002541.3), which encodes a subunit of the tricarboxylic acid cycle enzyme α-ketoglutarate dehydrogenase. In silico homology modeling predicts that c.566C>T:p.(Pro189Leu) and c.890C>A:p.(Ser297Tyr) variants interfere with the structure and function of OGDH. Fibroblasts from individual 1 showed that the p.(Ser297Tyr) variant led to a higher degradation rate of the OGDH protein. OGDH protein with p.(Pro189Leu) or p.(Ser297Tyr) variants in HEK293 cells showed significantly lower levels than the wild-type protein. Furthermore, we showed that expression of Drosophila Ogdh (dOgdh) carrying variants homologous to p.(Pro189Leu) or p.(Ser297Tyr), failed to rescue developmental lethality caused by loss of dOgdh. SpliceAI, a variant splice predictor, predicted that the c.935G>A:p.(Arg312Lys)/p.(Phe264_Arg312del) variant impacts splicing, which was confirmed through a mini-gene assay in HEK293 cells. CONCLUSION: We established that biallelic variants in OGDH cause a neurodevelopmental disorder with metabolic and movement abnormalities.


Assuntos
Transtornos dos Movimentos , Transtornos do Neurodesenvolvimento , Animais , Humanos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células HEK293 , Complexo Cetoglutarato Desidrogenase/genética , Complexo Cetoglutarato Desidrogenase/metabolismo , Transtornos do Neurodesenvolvimento/genética
11.
Genet Med ; 25(6): 100314, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36305855

RESUMO

PURPOSE: This study aimed to define the genotypic and phenotypic spectrum of reversible acute liver failure (ALF) of infancy resulting from biallelic pathogenic TRMU variants and determine the role of cysteine supplementation in its treatment. METHODS: Individuals with biallelic (likely) pathogenic variants in TRMU were studied within an international retrospective collection of de-identified patient data. RESULTS: In 62 individuals, including 30 previously unreported cases, we described 47 (likely) pathogenic TRMU variants, of which 17 were novel, and 1 intragenic deletion. Of these 62 individuals, 42 were alive at a median age of 6.8 (0.6-22) years after a median follow-up of 3.6 (0.1-22) years. The most frequent finding, occurring in all but 2 individuals, was liver involvement. ALF occurred only in the first year of life and was reported in 43 of 62 individuals; 11 of whom received liver transplantation. Loss-of-function TRMU variants were associated with poor survival. Supplementation with at least 1 cysteine source, typically N-acetylcysteine, improved survival significantly. Neurodevelopmental delay was observed in 11 individuals and persisted in 4 of the survivors, but we were unable to determine whether this was a primary or a secondary consequence of TRMU deficiency. CONCLUSION: In most patients, TRMU-associated ALF was a transient, reversible disease and cysteine supplementation improved survival.


Assuntos
Falência Hepática Aguda , Falência Hepática , Adolescente , Criança , Pré-Escolar , Humanos , Lactente , Adulto Jovem , Acetilcisteína/uso terapêutico , Falência Hepática/tratamento farmacológico , Falência Hepática/genética , Falência Hepática Aguda/tratamento farmacológico , Falência Hepática Aguda/genética , Proteínas Mitocondriais/genética , Mutação , Estudos Retrospectivos , tRNA Metiltransferases/genética
12.
Mol Genet Metab Rep ; 33: 100931, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36420423

RESUMO

Malate dehydrogenases (MDH) serve a critical role in maintaining equilibrium of the NAD+/NADH ratio between the mitochondria and cytosol through the catalysis of the oxidation of L-malate to oxaloacetate in a reversible, NADH-dependent manner. MDH2 encodes the mitochondrial isoform, which is integral to the tricarboxylic acid cycle and thus energy homeostasis. Recently, five patients harboring compound heterozygous MDH2 variants have been described, three with early-onset epileptic encephalopathy, one with a stroke-like episode, and one with dilated cardiomyopathy. Here, we describe an additional seven patients with biallelic variants in MDH2, the largest and most neurodevelopmentally and ethnically diverse cohort to-date, including homozygous variants, a sibling pair, non-European patients, and an adult. From these patients, we learn that MDH2 deficiency results in a biochemical signature including elevations of plasma lactate and the lactate:pyruvate ratio with urinary excretion of malate. It also results in a recognizable constellation of neuroimaging findings of anterior-predominant cerebral atrophy, subependymal cysts with ventricular septations. We also recognize MDH2 deficiency as a cause of Leigh syndrome. Taken with existing patient reports, we conclude that MDH2 deficiency is an emerging and likely under-recognized cause of infantile epileptic encephalopathy and provide a framework for medical evaluation of patients identified with biallelic MDH2 variants.

13.
N Engl J Med ; 387(15): 1395-1403, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36239646

RESUMO

We describe the case of identical twin boys who presented with low body weight despite excessive caloric intake. An evaluation of their fibroblasts showed elevated oxygen consumption and decreased mitochondrial membrane potential. Exome analysis revealed a de novo heterozygous variant in ATP5F1B, which encodes the ß subunit of mitochondrial ATP synthase (also called complex V). In yeast, mutations affecting the same region loosen coupling between the proton motive force and ATP synthesis, resulting in high rates of mitochondrial respiration. Expression of the mutant allele in human cell lines recapitulates this phenotype. These data support an autosomal dominant mitochondrial uncoupling syndrome with hypermetabolism. (Funded by the National Institutes of Health.).


Assuntos
Doenças Mitocondriais , ATPases Mitocondriais Próton-Translocadoras , Fosforilação Oxidativa , Consumo de Oxigênio , Humanos , Masculino , Trifosfato de Adenosina/metabolismo , Doenças em Gêmeos/genética , Doenças em Gêmeos/metabolismo , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/congênito , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mutação , Consumo de Oxigênio/genética , Consumo de Oxigênio/fisiologia , Gêmeos Monozigóticos/genética
14.
Mol Genet Metab ; 137(3): 230-238, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36182714

RESUMO

In this retrospective cohort study of 193 consecutive subjects with primary mitochondrial disease (PMD) seen at the Children's Hospital of Philadelphia Mitochondrial Medicine Frontier Program, we assessed prevalence, severity, and time of onset of sensorineural hearing loss (SNHL) for PMD cases with different genetic etiologies. Subjects were grouped by genetic diagnosis: mitochondrial DNA (mtDNA) pathogenic variants, single large-scale mtDNA deletions (SLSMD), or nuclear DNA (nDNA) pathogenic variants. SNHL was audiometrically confirmed in 27% of PMD subjects (20% in mtDNA pathogenic variants, 58% in SLSMD and 25% in nDNA pathogenic variants). SLSMD had the highest odds ratio for SNHL. SNHL onset was post-lingual in 79% of PMD cases, interestingly including all cases with mtDNA pathogenic variants and SLSMD, which was significantly different from PMD cases caused by nDNA pathogenic variants. SNHL onset during school age was predominant in this patient population. Regular audiologic assessment is important for PMD patients, and PMD of mtDNA etiology should be considered as a differential diagnosis in pediatric patients and young adults with post-lingual SNHL onset, particularly in the setting of multi-system clinical involvement. Pathogenic mtDNA variants and SLSMD are less likely etiologies in subjects with congenital, pre-lingual onset SNHL.


Assuntos
Perda Auditiva Neurossensorial , Doenças Mitocondriais , Adulto Jovem , Humanos , Criança , DNA Mitocondrial/genética , Estudos Retrospectivos , Doenças Mitocondriais/complicações , Doenças Mitocondriais/genética , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/diagnóstico , Mitocôndrias/genética
15.
Mol Genet Metab ; 135(1): 93-101, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34969639

RESUMO

Mitochondrial disease diagnosis requires interrogation of both nuclear and mitochondrial (mtDNA) genomes for single-nucleotide variants (SNVs) and copy number alterations, both in the proband and often maternal relatives, together with careful phenotype correlation. We developed a comprehensive mtDNA sequencing test ('MitoGenome') using long-range PCR (LR-PCR) to amplify the full length of the mtDNA genome followed by next generation sequencing (NGS) to accurately detect SNVs and large-scale mtDNA deletions (LSMD), combined with droplet digital PCR (ddPCR) for LSMD heteroplasmy quantification. Overall, MitoGenome tests were performed on 428 samples from 394 patients with suspected or confirmed mitochondrial disease. The positive yield was 11% (43/394), including 34 patients with pathogenic or likely pathogenic SNVs (the most common being m.3243A > G in 8/34 (24%) patients), 8 patients with single LSMD, and 3 patients with multiple LSMD exceeding 10% heteroplasmy levels. Two patients with both LSMD and pathogenic SNV were detected. Overall, this LR-PCR/NGS assay provides a highly accurate and comprehensive diagnostic method for simultaneous mtDNA SNV detection at heteroplasmy levels as low as 1% and LSMD detection at heteroplasmy levels below 10%. Inclusion of maternal samples for variant classification and ddPCR to quantify LSMD heteroplasmy levels further enables accurate pathogenicity assessment and clinical correlation interpretation of mtDNA genome sequence variants and copy number alterations.


Assuntos
Genoma Mitocondrial , Doenças Mitocondriais , DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mitocôndrias/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética
16.
Genet Med ; 24(2): 319-331, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34906466

RESUMO

PURPOSE: Adducins interconnect spectrin and actin filaments to form polygonal scaffolds beneath the cell membranes and form ring-like structures in neuronal axons. Adducins regulate mouse neural development, but their function in the human brain is unknown. METHODS: We used exome sequencing to uncover ADD1 variants associated with intellectual disability (ID) and brain malformations. We studied ADD1 splice isoforms in mouse and human neocortex development with RNA sequencing, super resolution imaging, and immunoblotting. We investigated 4 variant ADD1 proteins and heterozygous ADD1 cells for protein expression and ADD1-ADD2 dimerization. We studied Add1 functions in vivo using Add1 knockout mice. RESULTS: We uncovered loss-of-function ADD1 variants in 4 unrelated individuals affected by ID and/or structural brain defects. Three additional de novo copy number variations covering the ADD1 locus were associated with ID and brain malformations. ADD1 is highly expressed in the neocortex and the corpus callosum, whereas ADD1 splice isoforms are dynamically expressed between cortical progenitors and postmitotic neurons. Human variants impair ADD1 protein expression and/or dimerization with ADD2. Add1 knockout mice recapitulate corpus callosum dysgenesis and ventriculomegaly phenotypes. CONCLUSION: Our human and mouse genetics results indicate that pathogenic ADD1 variants cause corpus callosum dysgenesis, ventriculomegaly, and/or ID.


Assuntos
Hidrocefalia , Deficiência Intelectual , Agenesia do Corpo Caloso/genética , Agenesia do Corpo Caloso/patologia , Animais , Variações do Número de Cópias de DNA , Humanos , Hidrocefalia/genética , Deficiência Intelectual/genética , Camundongos , Fenótipo
18.
19.
Mol Genet Metab ; 134(1-2): 37-42, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34176718

RESUMO

Elevated citrulline and C5-OH levels are reported as part of the newborn screening of core and secondary disorders on the Recommended Uniform Screening Panel (RUSP). Additionally, some state laboratory newborn screening programs report low citrulline levels, which may be observed in proximal urea cycle disorders. We report six patients who were found on newborn screening to have low citrulline and/or elevated C5-OH levels in whom confirmatory testing showed the combination of these two abnormal analytes. Mitochondrial sequencing revealed known pathogenic variants in MT-ATP6 at high heteroplasmy levels in all cases. MT-ATP6 at these heteroplasmy levels is associated with Leigh syndrome, a progressive neurodegenerative disease. Patients were treated with supplemental citrulline and, in some cases, mitochondrial cofactor therapy. These six patients have not experienced metabolic crises or developmental regression, and early diagnosis and management may help prevent the neurological sequelae of Leigh syndrome. The affected mothers and siblings are asymptomatic or paucisymptomatic (e.g. intellectual disability, depression, migraines, obsessive-compulsive disorder, and poor balance) despite high heteroplasmy or apparent homoplasmy of the familial variant, thus expanding the clinical spectrum seen in pathogenic variants of MT-ATP6. Confirmatory plasma amino acid analysis and acylcarnitine profiling should be ordered in a patient with either low citrulline and/or elevated C5-OH, as this combination appears specific for pathogenic variants in MT-ATP6.


Assuntos
Testes Genéticos/métodos , Doença de Leigh/diagnóstico , Doença de Leigh/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Triagem Neonatal/métodos , Carnitina/sangue , Carnitina/química , Citrulina/sangue , DNA Mitocondrial/genética , Feminino , Humanos , Recém-Nascido , Masculino , Estudos Prospectivos
20.
Am J Med Genet A ; 185(8): 2519-2525, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34008913

RESUMO

Defects of mitoribosome assembly with destabilization of mitochondrial ribosomal proteins and subsequent aberrant mitochondrial translation machinery are one of the emerging categories of human mitochondrial disease. Mitochondrial translation deficiency constitutes a growing cause of combined oxidative phosphorylation deficiency and overall causes a set of clinically heterogeneous multi-systemic diseases. We present here the sixth individual with combined oxidative phosphorylation deficiency-9 (COXPD9) secondary to a likely pathogenic homozygous MRPL3 variant c.571A > C; p.(Thr191Pro). MRPL3 encodes a large mitochondrial ribosome subunit protein, impairing the mitochondrial translation and resulting in multisystem disease. Similar to previously reported individuals, this reported female proband presented with psychomotor retardation, sensorineural hearing loss, hypertrophic cardiomyopathy, failure to thrive, and lactic acidosis. Further, she has additional, previously unreported, features including Leigh syndrome, cataracts, hypotonia, scoliosis, myopathy, exercise intolerance, childhood-onset cardiomyopathy, and microcephaly. This subject is the oldest reported individual with COXPD9. This report also summarizes the clinical and molecular data of the previously reported individuals with COXPD9 to describe the full phenotypic spectrum.


Assuntos
Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Mutação , Proteínas Ribossômicas/genética , Alelos , Substituição de Aminoácidos , Biomarcadores , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Criança , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Erros Inatos do Metabolismo/tratamento farmacológico , Doenças Mitocondriais/tratamento farmacológico , Porto Rico , Irmãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA