Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Virol ; : e0071124, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082839

RESUMO

Cytotoxic T lymphocytes (CTLs) mediate host defense against viral and intracellular bacterial infections and tumors. However, the magnitude of CTL response and their function needed to confer heterosubtypic immunity against influenza virus infection are unknown. We addressed the role of CD8+ T cells in the absence of any cross-reactive antibody responses to influenza viral proteins using an adenoviral vector expressing a 9mer amino acid sequence recognized by CD8+ T cells. Our results indicate that both CD8+ T cell frequency and function are crucial for heterosubtypic immunity. Low morbidity, lower viral lung titers, low to minimal lung pathology, and better survival upon heterosubtypic virus challenge correlated with the increased frequency of NP-specific CTLs. NP-CD8+ T cells induced by differential infection doses displayed distinct RNA transcriptome profiles and functional properties. CD8+ T cells induced by a high dose of influenza virus secreted significantly higher levels of IFN-γ and exhibited higher levels of cytotoxic function. The mice that received NP-CD8+ T cells from the high-dose virus recipients through adoptive transfer had lower viral titers following viral challenge than those induced by the low dose of virus, suggesting differential cellular programming by antigen dose. Enhanced NP-CD8+ T-cell functions induced by a higher dose of influenza virus strongly correlated with the increased expression of cellular and metabolic genes, indicating a shift to a more glycolytic metabolic phenotype. These findings have implications for developing effective T cell vaccines against infectious diseases and cancer. IMPORTANCE: Cytotoxic T lymphocytes (CTLs) are an important component of the adaptive immune system that clears virus-infected cells or tumor cells. Hence, developing next-generation vaccines that induce or recall CTL responses against cancer and infectious diseases is crucial. However, it is not clear if the frequency, function, or both are essential in conferring protection, as in the case of influenza. In this study, we demonstrate that both CTL frequency and function are crucial for providing heterosubtypic immunity to influenza by utilizing an Ad-viral vector expressing a CD8 epitope only to rule out the role of antibodies, single-cell RNA-seq analysis, as well as adoptive transfer experiments. Our findings have implications for developing T cell vaccines against infectious diseases and cancer.

2.
Nat Commun ; 15(1): 254, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177116

RESUMO

Repeat vaccination with egg-based influenza vaccines could preferentially boost antibodies targeting the egg-adapted epitopes and reduce immunogenicity to circulating viruses. In this randomized trial (Clinicaltrials.gov: NCT03722589), sera pre- and post-vaccination with quadrivalent inactivated egg-based (IIV4), cell culture-based (ccIIV4), and recombinant (RIV4) influenza vaccines were collected from healthcare personnel (18-64 years) in 2018-19 (N = 723) and 2019-20 (N = 684) influenza seasons. We performed an exploratory analysis. Vaccine egg-adapted changes had the most impact on A(H3N2) immunogenicity. In year 1, RIV4 induced higher neutralizing and total HA head binding antibodies to cell- A(H3N2) virus than ccIIV4 and IIV4. In year 2, among the 7 repeat vaccination arms (IIV4-IIV4, IIV4-ccIIV4, IIV4-RIV4, RIV4-ccIIV4, RIV4-RIV4, ccIIV4-ccIIV4 and ccIIV4-RIV4), repeat vaccination with either RIV4 or ccIIV4 further improved antibody responses to circulating viruses with decreased neutralizing antibody egg/cell ratio. RIV4 also had higher post-vaccination A(H1N1)pdm09 and A(H3N2) HA stalk antibodies in year 1, but there was no significant difference in HA stalk antibody fold rise among vaccine groups in either year 1 or year 2. Multiple seasons of non-egg-based vaccination may be needed to redirect antibody responses from immune memory to egg-adapted epitopes and re-focus the immune responses towards epitopes on the circulating viruses to improve vaccine effectiveness.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Humanos , Anticorpos Antivirais , Formação de Anticorpos , Técnicas de Cultura de Células , Epitopos , Testes de Inibição da Hemaglutinação , Vírus da Influenza A Subtipo H3N2 , Influenza Humana/prevenção & controle , Vacinação , Vacinas de Produtos Inativados
3.
Brain Behav Immun ; 115: 617-630, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37967662

RESUMO

Birth is an inflammatory event for the newborn, characterized by elevations in interleukin (IL)-6, IL-10, and tumor necrosis factor (TNF)-α peripherally and/or centrally, as well as changes in brain microglia. However, the mechanism(s) underlying these responses is unknown. Toll-like receptors (TLRs) play crucial roles in innate immunity and initiate inflammatory cascades upon recognition of endogenous or exogenous antigens. Most TLR signaling depends on the adaptor molecule myeloid differentiation primary response 88 (MyD88). We independently varied MyD88 gene status in mouse dams and their offspring to determine whether the inflammatory response to birth depends on MyD88 signaling and, if so, whether that signaling occurs in the offspring, the mother, or both. We find that the perinatal surges in plasma IL-6 and brain expression of TNF-α depend solely on MyD88 gene status of the offspring, whereas postnatal increases in plasma IL-10 and TNF-α depend on MyD88 in both the pup and dam. Interestingly, MyD88 genotype of the dam primarily drives differences in offspring brain microglial density and has robust effects on developmental neuronal cell death. Milk cytokines were evaluated as a possible source of postnatal maternal influence; although we found high levels of CXCL1/GROα and several other cytokines in ingested post-partum milk, their presence did not require MyD88. Thus, the inflammatory response previously described in the late-term fetus and newborn depends on MyD88 (and, by extension, TLRs), with signaling in both the dam and offspring contributing. Unexpectedly, naturally-occuring neuronal cell death in the newborn is modulated primarily by maternal MyD88 gene status.


Assuntos
Interleucina-10 , Fator 88 de Diferenciação Mieloide , Animais , Feminino , Camundongos , Gravidez , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Citocinas/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , Mães , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Open Forum Infect Dis ; 10(6): ofad223, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37305842

RESUMO

Background: Emerging data suggest that second-generation influenza vaccines with higher hemagglutinin (HA) antigen content and/or different production methods may induce stronger antibody responses to HA than standard-dose egg-based influenza vaccines in adults. We compared antibody responses to high-dose egg-based inactivated (HD-IIV3), recombinant (RIV4), and cell culture-based (ccIIV4) vs standard-dose egg-based inactivated influenza vaccine (SD-IIV4) among health care personnel (HCP) aged 18-65 years in 2 influenza seasons (2018-2019, 2019-2020). Methods: In the second trial season, newly and re-enrolled HCPs who received SD-IIV4 in season 1 were randomized to receive RIV4, ccIIV4, or SD-IIV4 or were enrolled in an off-label, nonrandomized arm to receive HD-IIV3. Prevaccination and 1-month-postvaccination sera were tested by hemagglutination inhibition (HI) assay against 4 cell culture propagated vaccine reference viruses. Primary outcomes, adjusted for study site and baseline HI titer, were seroconversion rate (SCR), geometric mean titers (GMTs), mean fold rise (MFR), and GMT ratios that compared vaccine groups to SD-IIV4. Results: Among 390 HCP in the per-protocol population, 79 received HD-IIV3, 103 RIV4, 106 ccIIV4, and 102 SD-IIV4. HD-IIV3 recipients had similar postvaccination antibody titers compared with SD-IIV4 recipients, whereas RIV4 recipients had significantly higher 1-month-postvaccination antibody titers against vaccine reference viruses for all outcomes. Conclusions: HD-IIV3 did not induce higher antibody responses than SD-IIV4, but, consistent with previous studies, RIV4 was associated with higher postvaccination antibody titers. These findings suggest that recombinant vaccines rather than vaccines with higher egg-based antigen doses may provide improved antibody responses in highly vaccinated populations.

5.
Clin Infect Dis ; 76(3): e1168-e1176, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36031405

RESUMO

BACKGROUND: Antibody responses to non-egg-based standard-dose cell-culture influenza vaccine (containing 15 µg hemagglutinin [HA]/component) and recombinant vaccine (containing 45 µg HA/component) during consecutive seasons have not been studied in the United States. METHODS: In a randomized trial of immunogenicity of quadrivalent influenza vaccines among healthcare personnel (HCP) aged 18-64 years over 2 consecutive seasons, HCP who received recombinant-HA influenza vaccine (RIV) or cell culture-based inactivated influenza vaccine (ccIIV) during the first season (year 1) were re-randomized the second season of 2019-2020 (year 2 [Y2]) to receive ccIIV or RIV, resulting in 4 ccIIV/RIV combinations. In Y2, hemagglutination inhibition antibody titers against reference cell-grown vaccine viruses were compared in each ccIIV/RIV group with titers among HCP randomized both seasons to receive egg-based, standard-dose inactivated influenza vaccine (IIV) using geometric mean titer (GMT) ratios of Y2 post-vaccination titers. RESULTS: Y2 data from 414 HCP were analyzed per protocol. Compared with 60 IIV/IIV recipients, 74 RIV/RIV and 106 ccIIV/RIV recipients showed significantly elevated GMT ratios (Bonferroni corrected P < .007) against all components except A(H3N2). Post-vaccination GMT ratios for ccIIV/ccIIV and RIV/ccIIV were not significantly elevated compared with IIV/IIV except for RIV/ccIIV against A(H1N1)pdm09. CONCLUSIONS: In adult HCP, receipt of RIV in 2 consecutive seasons or the second season was more immunogenic than consecutive egg-based IIV for 3 of the 4 components of quadrivalent vaccine. Immunogenicity of ccIIV/ccIIV was similar to that of IIV/IIV. Differences in HA antigen content may play a role in immunogenicity of influenza vaccination in consecutive seasons. CLINICAL TRIALS REGISTRATION: NCT03722589.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Vacina Antivariólica , Adulto , Humanos , Anticorpos Antivirais , Técnicas de Cultura de Células , Atenção à Saúde , Testes de Inibição da Hemaglutinação , Vírus da Influenza A Subtipo H3N2 , Estados Unidos , Vacinação , Vacinas Combinadas , Vacinas de Produtos Inativados , Vacinas Sintéticas
6.
PLoS One ; 16(7): e0254632, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34280220

RESUMO

Superoxide radicals and other reactive oxygen species (ROS) are implicated in influenza A virus-induced inflammation. In this in vitro study, we evaluated the effects of TG6-44, a novel quinazolin-derived myeloperoxidase-specific ROS inhibitor, on influenza A virus (A/X31) infection using THP-1 lung monocytic cells and freshly isolated peripheral blood mononuclear cells (PBMC). TG6-44 significantly decreased A/X31-induced ROS and virus-induced inflammatory mediators in THP-1 cells (IL-6, IFN-γ, MCP-1, TNF-α, MIP-1ß) and in human PBMC (IL-6, IL-8, TNF-α, MCP-1). Interestingly, TG6-44-treated THP-1 cells showed a decrease in percent cells expressing viral nucleoprotein, as well as a delay in translocation of viral nucleoprotein into the nucleus. Furthermore, in influenza A virus-infected cells, TG6-44 treatment led to suppression of virus-induced cell death as evidenced by decreased caspase-3 activation, decreased proportion of Annexin V+PI+ cells, and increased Bcl-2 phosphorylation. Taken together, our results demonstrate the anti-inflammatory and anti-infective effects of TG6-44.


Assuntos
Mediadores da Inflamação/farmacologia , Inflamação/tratamento farmacológico , Vírus da Influenza A/efeitos dos fármacos , Peroxidase/antagonistas & inibidores , Espécies Reativas de Oxigênio/antagonistas & inibidores , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CCL2/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/patologia , Inflamação/virologia , Vírus da Influenza A/patogenicidade , Interleucina-6/genética , Interleucina-8/genética , Leucócitos Mononucleares/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Peroxidase/genética , Quinazolinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo , Fator de Necrose Tumoral alfa/genética
7.
Clin Infect Dis ; 73(11): 1973-1981, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34245243

RESUMO

BACKGROUND: RIV4 and cell-culture based inactivated influenza vaccine (ccIIV4) have not been compared to egg-based IIV4 in healthcare personnel, a population with frequent influenza vaccination that may blunt vaccine immune responses over time. We conducted a randomized trial among healthcare personnel (HCP) aged 18-64 years to compare humoral immune responses to ccIIV4 and RIV4 to IIV4. METHODS: During the 2018-2019 season, participants were randomized to receive ccIIV4, RIV4, or IIV4 and had serum samples collected prevaccination, 1 and 6 months postvaccination. Serum samples were tested by hemagglutination inhibition (HI) for influenza A/H1N1, B/Yamagata, and B/Victoria and microneutralization (MN) for A/H3N2 against cell-grown vaccine reference viruses. Primary outcomes at 1 month were seroconversion rate (SCR), geometric mean titers (GMT), GMT ratio, and mean fold rise (MFR) in the intention-to-treat population. RESULTS: In total, 727 participants were included (283 ccIIV4, 202 RIV4, and 242 IIV4). At 1 month, responses to ccIIV4 were similar to IIV4 by SCR, GMT, GMT ratio, and MFR. RIV4 induced higher SCRs, GMTs, and MFRs than IIV4 against A/H1N1, A/H3N2, and B/Yamagata. The GMT ratio of RIV4 to egg-based vaccines was 1.5 (95% confidence interval [CI] 1.2-1.9) for A/H1N1, 3.0 (95% CI: 2.4-3.7) for A/H3N2, 1.1 (95% CI: .9-1.4) for B/Yamagata, and 1.1 (95% CI: .9-1.3) for B/Victoria. At 6 months, ccIIV4 recipients had similar GMTs to IIV4, whereas RIV4 recipients had higher GMTs against A/H3N2 and B/Yamagata. CONCLUSIONS: RIV4 resulted in improved antibody responses by HI and MN compared to egg-based vaccines against 3 of 4 cell-grown vaccine strains 1 month postvaccination, suggesting a possible additional benefit from RIV4. CLINICAL TRIALS REGISTRATION: NCT03722589.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Anticorpos Antivirais , Técnicas de Cultura de Células , Atenção à Saúde , Testes de Inibição da Hemaglutinação , Humanos , Imunogenicidade da Vacina , Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza B , Influenza Humana/prevenção & controle , Vacinas de Produtos Inativados
8.
Adv Sci (Weinh) ; 8(16): e2100693, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34189857

RESUMO

Influenza infections cause several million cases of severe respiratory illness, hospitalizations, and hundreds of thousands of deaths globally. Secondary infections are a leading cause of influenza's high morbidity and mortality, and significantly factored into the severity of the 1918, 1968, and 2009 pandemics. Furthermore, there is an increased incidence of other respiratory infections even in vaccinated individuals during influenza season. Putative mechanisms responsible for vaccine failures against influenza as well as other respiratory infections during influenza season are investigated. Peripheral blood mononuclear cells (PBMCs) are used from influenza vaccinated individuals to assess antigen-specific responses to influenza, measles, and varicella. The observations made in humans to a mouse model to unravel the mechanism is confirmed and extended. Infection with influenza virus suppresses an ongoing adaptive response to vaccination against influenza as well as other respiratory pathogens, i.e., Adenovirus and Streptococcus pneumoniae by preferentially infecting and killing activated lymphocytes which express elevated levels of sialic acid receptors. These findings propose a new mechanism for the high incidence of secondary respiratory infections due to bacteria and other viruses as well as vaccine failures to influenza and other respiratory pathogens even in immune individuals due to influenza viral infections.


Assuntos
Imunidade Adaptativa/imunologia , Influenza Humana/imunologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C
9.
Science ; 372(6546): 1108-1112, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947773

RESUMO

The molecular composition and binding epitopes of the immunoglobulin G (IgG) antibodies that circulate in blood plasma after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are unknown. Proteomic deconvolution of the IgG repertoire to the spike glycoprotein in convalescent subjects revealed that the response is directed predominantly (>80%) against epitopes residing outside the receptor binding domain (RBD). In one subject, just four IgG lineages accounted for 93.5% of the response, including an amino (N)-terminal domain (NTD)-directed antibody that was protective against lethal viral challenge. Genetic, structural, and functional characterization of a multidonor class of "public" antibodies revealed an NTD epitope that is recurrently mutated among emerging SARS-CoV-2 variants of concern. These data show that "public" NTD-directed and other non-RBD plasma antibodies are prevalent and have implications for SARS-CoV-2 protection and antibody escape.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Imunoglobulina G/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/química , Anticorpos Antivirais/sangue , Anticorpos Antivirais/química , Afinidade de Anticorpos , COVID-19/prevenção & controle , Epitopos/imunologia , Humanos , Evasão da Resposta Imune , Imunoglobulina G/sangue , Imunoglobulina G/química , Cadeias Pesadas de Imunoglobulinas/imunologia , Região Variável de Imunoglobulina/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Domínios Proteicos , Proteômica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética
10.
NPJ Vaccines ; 6(1): 25, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594050

RESUMO

The vaccine efficacy of standard-dose seasonal inactivated influenza vaccines (S-IIV) can be improved by the use of vaccines with higher antigen content or adjuvants. We conducted a randomized controlled trial in older adults to compare cellular and antibody responses of S-IIV versus enhanced vaccines (eIIV): MF59-adjuvanted (A-eIIV), high-dose (H-eIIV), and recombinant-hemagglutinin (HA) (R-eIIV). All vaccines induced comparable H3-HA-specific IgG and elevated antibody-dependent cellular cytotoxicity (ADCC) activity at day 30 post vaccination. H3-HA-specific ADCC responses were greatest following H-eIIV. Only A-eIIV increased H3-HA-IgG avidity, HA-stalk IgG and ADCC activity. eIIVs also increased polyfunctional CD4+ and CD8+ T cell responses, while cellular immune responses were skewed toward single-cytokine-producing T cells among S-IIV subjects. Our study provides further immunological evidence for the preferential use of eIIVs in older adults as each vaccine platform had an advantage over the standard-dose vaccine in terms of NK cell activation, HA-stalk antibodies, and T cell responses.

11.
Mol Ther Nucleic Acids ; 19: 1413-1422, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32160710

RESUMO

Retinoic acid-inducible gene-I (RIG-I) is a cytosolic pathogen sensor that is crucial against a number of viral infections. Many viruses have evolved to inhibit pathogen sensors to suppress host innate immune responses. In the case of influenza, nonstructural protein 1 (NS1) suppresses RIG-I function, leading to viral replication, morbidity, and mortality. We show that silencing NS1 with in-vitro-transcribed 5'-triphosphate containing NS1 short hairpin RNA (shRNA) (5'-PPP-NS1shRNA), designed using the conserved region of a number of influenza viruses, not only prevented NS1 expression but also induced RIG-I activation and type I interferon (IFN) expression, resulting in an antiviral state leading to inhibition of influenza virus replication in vitro. In addition, administration of 5'-PPP-NS1shRNA in prophylactic and therapeutic settings resulted in significant inhibition of viral replication following viral challenge in vivo in mice with corresponding increases of RIG-I, IFN-ß, and IFN-λ, as well as a decrease in NS1 expression.

12.
Antiviral Res ; 176: 104747, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32092305

RESUMO

Influenza virus non-structural protein 1 (NS1) counteracts host antiviral innate immune responses by inhibiting Retinoic acid inducible gene-I (RIG-I) activation. However, whether NS1 also specifically regulates RIG-I transcription is unknown. Here, we identify a CCAAT/Enhancer Binding Protein beta (C/EBPß) binding site in the RIG-I promoter as a repressor element, and show that NS1 promotes C/EBPß phosphorylation and its recruitment to the RIG-I promoter as a C/EBPß/NS1 complex. C/EBPß overexpression and siRNA knockdown in human lung epithelial cells resulted in suppression and activation of RIG-I expression respectively, implying a negative regulatory role of C/EBPß. Further, C/EBPß phosphorylation, its interaction with NS1 and occupancy at the RIG-I promoter was associated with RIG-I transcriptional inhibition. These findings provide an important insight into the molecular mechanism by which influenza NS1 commandeers RIG-I transcriptional regulation and suppresses host antiviral responses.


Assuntos
Proteína DEAD-box 58/genética , Regulação da Expressão Gênica , Imunidade Inata , Vírus da Influenza A/genética , Proteínas não Estruturais Virais/imunologia , Células A549 , Sítios de Ligação , Proteína beta Intensificadora de Ligação a CCAAT , Proteína DEAD-box 58/imunologia , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Vírus da Influenza A/imunologia , Influenza Humana/virologia , Fosforilação , Regiões Promotoras Genéticas , Receptores Imunológicos , Transcrição Gênica , Proteínas não Estruturais Virais/genética
13.
bioRxiv ; 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33398269

RESUMO

Although humoral immunity is essential for control of SARS-CoV-2, the molecular composition, binding epitopes and effector functions of the immunoglobulin G (IgG) antibodies that circulate in blood plasma following infection are unknown. Proteomic deconvolution of the circulating IgG repertoire (Ig-Seq 1 ) to the spike ectodomain (S-ECD 2 ) in four convalescent study subjects revealed that the plasma response is oligoclonal and directed predominantly (>80%) to S-ECD epitopes that lie outside the receptor binding domain (RBD). When comparing antibodies directed to either the RBD, the N-terminal domain (NTD) or the S2 subunit (S2) in one subject, just four IgG lineages (1 anti-S2, 2 anti-NTD and 1 anti-RBD) accounted for 93.5% of the repertoire. Although the anti-RBD and one of the anti-NTD antibodies were equally potently neutralizing in vitro , we nonetheless found that the anti-NTD antibody was sufficient for protection to lethal viral challenge, either alone or in combination as a cocktail where it dominated the effect of the other plasma antibodies. We identified in vivo protective plasma anti-NTD antibodies in 3/4 subjects analyzed and discovered a shared class of antibodies targeting the NTD that utilize unmutated or near-germline IGHV1-24, the most electronegative IGHV gene in the human genome. Structural analysis revealed that binding to NTD is dominated by interactions with the heavy chain, accounting for 89% of the entire interfacial area, with germline residues uniquely encoded by IGHV1-24 contributing 20% (149 Å 2 ). Together with recent reports of germline IGHV1-24 antibodies isolated by B-cell cloning 3,4 our data reveal a class of shared IgG antibodies that are readily observed in convalescent plasma and underscore the role of NTD-directed antibodies in protection against SARS-CoV-2 infection.

14.
Clin Infect Dis ; 71(7): 1704-1714, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31828291

RESUMO

BACKGROUND: Enhanced influenza vaccines may improve protection for older adults, but comparative immunogenicity data are limited. Our objective was to examine immune responses to enhanced influenza vaccines, compared to standard-dose vaccines, in community-dwelling older adults. METHODS: Community-dwelling older adults aged 65-82 years in Hong Kong were randomly allocated (October 2017-January 2018) to receive 2017-2018 Northern hemisphere formulations of a standard-dose quadrivalent vaccine, MF59-adjuvanted trivalent vaccine, high-dose trivalent vaccine, or recombinant-hemagglutinin (rHA) quadrivalent vaccine. Sera collected from 200 recipients of each vaccine before and at 30-days postvaccination were assessed for antibodies to egg-propagated vaccine strains by hemagglutination inhibition (HAI) and to cell-propagated A/Hong Kong/4801/2014(H3N2) virus by microneutralization (MN). Influenza-specific CD4+ and CD8+ T cell responses were assessed in 20 participants per group. RESULTS: Mean fold rises (MFR) in HAI titers to egg-propagated A(H1N1) and A(H3N2) and the MFR in MN to cell-propagated A(H3N2) were statistically significantly higher in the enhanced vaccine groups, compared to the standard-dose vaccine. The MFR in MN to cell-propagated A(H3N2) was highest among rHA recipients (4.7), followed by high-dose (3.4) and MF59-adjuvanted (2.9) recipients, compared to standard-dose recipients (2.3). Similarly, the ratio of postvaccination MN titers among rHA recipients to cell-propagated A(H3N2) recipients was 2.57-fold higher than the standard-dose vaccine, which was statistically higher than the high-dose (1.33-fold) and MF59-adjuvanted (1.43-fold) recipient ratios. Enhanced vaccines also resulted in the boosting of T-cell responses. CONCLUSIONS: In this head-to-head comparison, older adults receiving enhanced vaccines showed improved humoral and cell-mediated immune responses, compared to standard-dose vaccine recipients. CLINICAL TRIALS REGISTRATION: NCT03330132.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Adjuvantes Imunológicos , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais , Testes de Inibição da Hemaglutinação , Humanos , Imunogenicidade da Vacina , Vírus da Influenza A Subtipo H3N2 , Influenza Humana/prevenção & controle , Esqualeno
15.
J Infect Dis ; 220(5): 743-751, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31045222

RESUMO

BACKGROUND: Human immunodeficiency virus (HIV)-infected persons are at a higher risk of severe influenza. Although we have shown that a standard-dose intradermal influenza vaccine versus a standard-dose intramuscular influenza vaccine does not result in differences in hemagglutination-inhibition titers in this population, a comprehensive examination of cell-mediated immune responses remains lacking. METHODS: Serological, antigen-specific B-cell, and interleukin 2-, interferon γ-, and tumor necrosis factor α-secreting T-cell responses were assessed in 79 HIV-infected men and 79 HIV-uninfected men. RESULTS: The route of vaccination did not affect the immunoglobulin A and immunoglobulin G (IgG) plasmablast or memory B-cell response, although these were severely impaired in the group with a CD4+ T-cell count of <200 cells/µL. The frequencies of IgG memory B cells measured on day 28 after vaccination were highest in the HIV-uninfected group, followed by the group with a CD4+ T-cell count of ≥200 cells/µL and the group with a CD4+ T-cell count of <200 cells/µL. The route of vaccination did not affect the CD4+ or CD8+ T-cell responses measured at various times after vaccination. CONCLUSIONS: The route of vaccination had no effect on antibody responses, antibody avidity, T-cell responses, or B-cell responses in HIV-infected or HIV-uninfected subjects. With the serological and cellular immune responses to influenza vaccination being impaired in HIV-infected individuals with a CD4+ T-cell count of <200 cells/µL, passive immunization strategies need to be explored to protect this population. CLINICAL TRIALS REGISTRATION: NCT01538940.


Assuntos
Infecções por HIV/imunologia , Imunidade Celular/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/normas , Influenza Humana/prevenção & controle , Adulto , Anticorpos Antivirais/imunologia , Formação de Anticorpos , Linfócitos B/imunologia , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Infecções por HIV/complicações , Testes de Inibição da Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Imunoglobulina A , Imunoglobulina G , Vírus da Influenza A Subtipo H1N1/imunologia , Interferon gama/metabolismo , Interleucina-2/metabolismo , Masculino , Pessoa de Meia-Idade , Tailândia , Fator de Necrose Tumoral alfa/metabolismo , Vacinação
16.
Transpl Immunol ; 53: 51-60, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30664927

RESUMO

Annual vaccination is routinely used in organ transplant recipients for immunization against seasonal influenza. However, detailed analysis of the kinetics of vaccine-induced immune responses in this population is lacking. In this study, we investigated the kinetics of vaccine strains-specific antibody responses to trivalent influenza vaccine in a group of renal transplant recipients and a control group. First, we found that the geometric mean hemagglutination inhibition titer against all 3 vaccine strains in the transplant cohort was significantly low when compared to control subjects. Next, whereas the control group sera showed significantly higher HA-specific IgG and isotype IgG1 antibodies at all four time points, a similar increase in the transplant group was delayed until day 28. Interestingly, within the transplant group, subjects receiving belatacept/MMF/prednisone-based regimen had significantly lower levels of total IgG and HA-specific IgG when compared to tacrolimus/MMF/prednisone-based regimen. Even though IgG-ASC response in both cohorts peaked at day 7 post-vaccination, the frequency of IgG-ASC was significantly low in the transplant group. Taken together, our studies show delayed kinetics and lower levels of influenza vaccine-specific antibody responses in renal transplant recipients and, more importantly, indicate the need to probe and improve current vaccination strategies in renal transplant recipients.


Assuntos
Rejeição de Enxerto/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Transplante de Rim , Adulto , Anticorpos Antivirais/metabolismo , Formação de Anticorpos , Estudos de Coortes , Feminino , Rejeição de Enxerto/complicações , Rejeição de Enxerto/tratamento farmacológico , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Terapia de Imunossupressão , Influenza Humana/complicações , Influenza Humana/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Tacrolimo/uso terapêutico , Transplantados , Vacinação
17.
Vaccine ; 36(45): 6744-6751, 2018 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30266488

RESUMO

There is a high incidence of adenovirus (AdV) infection in humans due to the presence of more than 60 types of human adenoviruses (HAdVs). The majority of individuals are exposed to one or more HAdV types early in their lives, leading to the development of AdV type-specific neutralizing antibodies. Similarly, immunization or gene therapy with AdV vectors leads to immune responses to the AdV vector. This 'vector immunity' is a concern for AdV vector-based applications for vaccines or gene therapy, especially when the repeated administration of a vector is required. The objective of this investigation was to establish whether AdV neutralizing antibody titers decline sufficiently in a year to permit annual vaccination with the same AdV vector. Naïve or human adenoviral vector group C, type 5 (HAdV-C5)-primed mice were mock-inoculated (with PBS) or inoculated i.m. with 108 PFU of either HAd-GFP [HAdV-C5 vector expressing the green fluorescent protein (GFP)] to mimic the conditions for the first inoculation with an AdV vector-based vaccine. At 1, 3, 6, and 10 months post-HAd-GFP inoculation, naïve- or HAdV-primed animals were vaccinated i.m. with 108 PFU of HAd-H5HA [HAdV-C5 vector expressing hemagglutinin (HA) of H5N1 influenza virus]. There was a significant continual decrease in vector immunity titers with time, thereby leading to significant continual increases in the levels of HA-specific humoral and cell-mediated immune responses. In addition, significant improvement in protection efficacy against challenge with an antigenically heterologous H5N1 virus was observed in HAdV-primed animals at 6 months and onwards. These results indicate that the annual immunization with the same AdV vector may be effective due to a significant decline in vector immunity.


Assuntos
Adenoviridae/genética , Vacinas contra Influenza/imunologia , Adenoviridae/imunologia , Animais , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Vetores Genéticos/genética , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/imunologia , Camundongos , Camundongos Endogâmicos BALB C
18.
Mol Ther Methods Clin Dev ; 10: 210-222, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30101154

RESUMO

Several human and nonhuman adenovirus (AdV) vectors including bovine AdV type 3 (BAdV-3) were developed as gene delivery vectors to supplement and/or elude human AdV (HAdV)-specific neutralizing antibodies (vector immunity). Here we evaluated the vaccine immunogenicity and efficacy of BAdV-3 vector (BAd-H5HA) expressing hemagglutinin (HA) of a H5N1 influenza virus in a dose escalation study in mice with the intranasal (IN) or intramuscular (IM) route of inoculation in comparison with the HAdV type C5 (HAdV-C5) vector (HAd-H5HA) expressing HA of a H5N1 influenza virus. Dose-related increases in the immune responses were clearly noticeable. A single IM inoculation with BAd-H5HA resulted in enhanced cellular immune responses compared with that of HAd-H5HA and conferred complete protection following challenge with a heterologous H5N1 virus at the dose of 3 × 107 plaque-forming units (PFUs), whereas a significant amount of influenza virus was detected in the lungs of mice immunized with 1 × 108 PFUs of HAd-H5HA. Similarly, compared with that of HAd-H5HA, a single IN inoculation with BAd-H5HA produced significantly enhanced humoral (HA-specific immunoglobulin [IgG] and its subclasses, as well as HA-specific IgA) and cellular immune responses, and conferred complete protection following challenge with a heterologous H5N1 virus. Complete protection with BAd-H5HA was observed with the lowest vaccine dose (1 × 106 PFUs), but similar protection with HAd-H5HA was observed at the highest vaccine dose (1 × 108 PFUs). These results suggest that at least 30-fold dose sparing can be achieved with BAd-H5HA vector compared with HAd-H5HA vaccine vector.

19.
Drug Deliv ; 25(1): 773-779, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29542358

RESUMO

Avian influenza virus infection is a serious public health threat and preventive vaccination is the most cost-effective public health intervention strategy. Unfortunately, currently available unadjuvanted avian influenza vaccines are poorly immunogenic and alternative vaccine formulations and delivery strategies are in urgent need to reduce the high risk of avian influenza pandemics. Cationic polymers have been widely used as vectors for gene delivery in vitro and in vivo. In this study, we formulated H5N1 influenza vaccines with GenJet™ or in vivo-jetPEI®, and showed that these formulations significantly enhanced the immunogenicity of H5N1 vaccines and conferred protective immunity in a mouse model. Detailed analyses of adaptive immune responses revealed that both formulations induced mixed TH1/TH2 antigen-specific CD4 T-cell responses, antigen-specific cytotoxic CD8 T-cell and memory B-cell responses. Our findings suggest that cationic polymers merit future development as potential adjuvants for mucosal delivery of poorly immunogenic vaccines.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Imunidade Celular/efeitos dos fármacos , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/administração & dosagem , Influenza Aviária/imunologia , Vacinas Sintéticas/administração & dosagem , Administração Intranasal , Animais , Anticorpos Antivirais/análise , Anticorpos Antivirais/biossíntese , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Composição de Medicamentos , Feminino , Imunogenicidade da Vacina , Indicadores e Reagentes/química , Indicadores e Reagentes/metabolismo , Vacinas contra Influenza/genética , Vacinas contra Influenza/metabolismo , Vacinas contra Influenza/uso terapêutico , Influenza Aviária/metabolismo , Influenza Aviária/prevenção & controle , Influenza Aviária/virologia , Camundongos Endogâmicos BALB C , Aves Domésticas , Análise de Sobrevida , Vacinas Sintéticas/genética , Vacinas Sintéticas/metabolismo , Vacinas Sintéticas/uso terapêutico , Redução de Peso/efeitos dos fármacos
20.
PLoS One ; 12(10): e0186244, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29023601

RESUMO

The emergence of H5, H7, and H9 avian influenza virus subtypes in humans reveals their pandemic potential. Although human-to-human transmission has been limited, the genetic reassortment of the avian and human/porcine influenza viruses or mutations in some of the genes resulting in virus replication in the upper respiratory tract of humans could generate novel pandemic influenza viruses. Current vaccines do not provide cross protection against antigenically distinct strains of the H5, H7, and H9 influenza viruses. Therefore, newer vaccine approaches are needed to overcome these potential threats. We developed an egg-independent, adenovirus vector-based, multi-epitope (ME) vaccine approach using the relatively conserved immunogenic domains of the H5N1 influenza virus [M2 ectodomain (M2e), hemagglutinin (HA) fusion domain (HFD), T-cell epitope of nucleoprotein (TNP). and HA α-helix domain (HαD)]. Our ME vaccine induced humoral and cell-mediated immune responses and caused a significant reduction in the viral loads in the lungs of vaccinated mice that were challenged with antigenically distinct H5, H7, or H9 avian influenza viruses. These results suggest that our ME vaccine approach provided broad protection against the avian influenza viruses. Further improvement of this vaccine will lead to a pre-pandemic vaccine that may lower morbidity, hinder transmission, and prevent mortality in a pandemic situation before a strain-matched vaccine becomes available.


Assuntos
Proteção Cruzada , Vírus da Influenza A/imunologia , Vacinas contra Influenza/uso terapêutico , Influenza Humana/prevenção & controle , Adenoviridae , Animais , Epitopos/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Hemaglutininas Virais/química , Hemaglutininas Virais/imunologia , Humanos , Camundongos , Proteínas do Core Viral/química , Proteínas do Core Viral/imunologia , Carga Viral , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA