Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(7): 114411, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38944834

RESUMO

Exposure to stressors has profound effects on sleep that have been linked to serotonin (5-HT) neurons of the dorsal raphe nucleus (DR). However, the DR also comprises glutamatergic neurons expressing vesicular glutamate transporter type 3 (DRVGLUT3), leading us to examine their role. Cell-type-specific tracing revealed that DRVGLUT3 neurons project to brain areas regulating arousal and stress. We found that chemogenetic activation of DRVGLUT3 neurons mimics stress-induced sleep perturbations. Furthermore, deleting VGLUT3 in the DR attenuated stress-induced sleep perturbations, especially after social defeat stress. In the DR, VGLUT3 is found in subsets of 5-HT and non-5-HT neurons. We observed that both populations are activated by acute stress, including those projecting to the ventral tegmental area. However, deleting VGLUT3 in 5-HT neurons minimally affected sleep regulation. These findings suggest that VGLUT3 expression in the DR drives stress-induced sleep perturbations, possibly involving non-5-HT DRVGLUT3 neurons.

2.
Neurobiol Dis ; 199: 106569, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885849

RESUMO

The vagus nerve serves as an interoceptive relay between the body and the brain. Despite its well-established role in feeding behaviors, energy metabolism, and cognitive functions, the intricate functional processes linking the vagus nerve to the hippocampus and its contribution to learning and memory dynamics remain still elusive. Here, we investigated whether and how the gut-brain vagal axis contributes to hippocampal learning and memory processes at behavioral, functional, cellular, and molecular levels. Our results indicate that the integrity of the vagal axis is essential for long-term recognition memories, while sparing other forms of memory. In addition, by combing multi-scale approaches, our findings show that the gut-brain vagal tone exerts a permissive role in scaling intracellular signaling events, gene expressions, hippocampal dendritic spines density as well as functional long-term plasticities (LTD and LTP). These results highlight the critical role of the gut-brain vagal axis in maintaining the spontaneous and homeostatic functions of hippocampal ensembles and in regulating their learning and memory functions. In conclusion, our study provides comprehensive insights into the multifaceted involvement of the gut-brain vagal axis in shaping time-dependent hippocampal learning and memory dynamics. Understanding the mechanisms underlying this interoceptive body-brain neuronal communication may pave the way for novel therapeutic approaches in conditions associated with cognitive decline, including neurodegenerative disorders.

3.
Mol Psychiatry ; 29(5): 1478-1490, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38361126

RESUMO

The N-acyl phosphatidylethanolamine-specific phospholipase D (NAPE-PLD) catalyzes the production of N-acylethanolamines (NAEs), a family of endogenous bioactive lipids, which are involved in various biological processes ranging from neuronal functions to energy homeostasis and feeding behaviors. Reward-dependent behaviors depend on dopamine (DA) transmission between the ventral tegmental area (VTA) and the nucleus accumbens (NAc), which conveys reward-values and scales reinforced behaviors. However, whether and how NAPE-PLD may contribute to the regulation of feeding and reward-dependent behaviors has not yet been investigated. This biological question is of paramount importance since NAEs are altered in obesity and metabolic disorders. Here, we show that transcriptomic meta-analysis highlights a potential role for NAPE-PLD within the VTA→NAc circuit. Using brain-specific invalidation approaches, we report that the integrity of NAPE-PLD is required for the proper homeostasis of NAEs within the midbrain VTA and it affects food-reward behaviors. Moreover, region-specific knock-down of NAPE-PLD in the VTA enhanced food-reward seeking and reinforced behaviors, which were associated with increased in vivo DA release dynamics in response to both food- and non-food-related rewards together with heightened tropism towards food consumption. Furthermore, midbrain knock-down of NAPE-PLD, which increased energy expenditure and adapted nutrient partitioning, elicited a relative protection against high-fat diet-mediated body fat gain and obesity-associated metabolic features. In conclusion, these findings reveal a new key role of VTA NAPE-PLD in shaping DA-dependent events, feeding behaviors and energy homeostasis, thus providing new insights on the regulation of body metabolism.


Assuntos
Dopamina , Comportamento Alimentar , Homeostase , Núcleo Accumbens , Fosfolipase D , Recompensa , Área Tegmentar Ventral , Área Tegmentar Ventral/metabolismo , Animais , Homeostase/fisiologia , Comportamento Alimentar/fisiologia , Fosfolipase D/metabolismo , Fosfolipase D/genética , Masculino , Camundongos , Núcleo Accumbens/metabolismo , Dopamina/metabolismo , Metabolismo Energético/fisiologia , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/genética , Neurônios Dopaminérgicos/metabolismo , Fosfatidiletanolaminas/metabolismo , Etanolaminas
4.
Artigo em Inglês | MEDLINE | ID: mdl-37858736

RESUMO

The selection and optimization of appropriate adaptive responses depends on interoceptive and exteroceptive stimuli as well as on the animal's ability to switch from one behavioral strategy to another. Although growing evidence indicate that dopamine D2R-mediated signaling events ensure the selection of the appropriate strategy for each specific situation, the underlying neural circuits through which they mediate these effects are poorly characterized. Here, we investigated the role of D2R signaling in a mesolimbic neuronal subpopulation expressing the Wolfram syndrome 1 (Wfs1) gene. This subpopulation is located within the nucleus accumbens, the central amygdala, the bed nucleus of the stria terminalis, and the tail of the striatum, all brain regions critical for the regulation of emotions and motivated behaviors. Using a mouse model carrying a temporally controlled deletion of D2R in WFS1-neurons, we demonstrate that intact D2R signaling in this neuronal population is necessary to regulate homeostasis-dependent food-seeking behaviors in both male and female mice. In addition, we found that reduced D2R signaling in WFS1-neurons impaired active avoidance learning and innate escape responses. Collectively, these findings identify a yet undocumented role for D2R signaling in WFS1-neurons as a novel effector through which dopamine optimizes appetitive behaviors and regulates defensive behaviors.


Assuntos
Dopamina , Síndrome de Wolfram , Animais , Feminino , Masculino , Aprendizagem da Esquiva , Neurônios/fisiologia , Receptores de Dopamina D1 , Receptores de Dopamina D2/genética
5.
Res Sq ; 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37790425

RESUMO

The N-acyl phosphatidylethanolamine-specific phospholipase D (NAPE-PLD) catalyzes the production of N-acylethanolamines (NAEs), a family of endogenous bioactive lipids, which are involved in various biological processes ranging from neuronal functions to energy homeostasis and feeding behaviors. Reward-dependent behaviors depend on dopamine (DA) transmission between the ventral tegmental area (VTA) and the nucleus accumbens (NAc), which conveys reward-values and scales reinforced behaviors. However, whether and how NAPE-PLD may contribute to the regulation of feeding and reward-dependent behaviors has not yet been investigated. This biological question is of paramount importance since NAEs are altered in obesity and metabolic disorders. Here, we show that transcriptomic meta-analysis highlights a potential role for NAPE-PLD within the VTA®NAc circuit. Using brain-specific invalidation approaches, we report that the integrity of NAPE-PLD is required for the proper homeostasis of NAEs within the midbrain VTA and it affects food-reward behaviors. Moreover, region-specific knock-down of NAPE-PLD in the VTA enhanced food-reward seeking and reinforced behaviors, which were associated with increased in vivo DA release dynamics in response to both food and non-food-related rewards together with heightened tropism towards food consumption. Furthermore, midbrain knock-down of NAPE-PLD, which increased energy expenditure and adapted nutrient partitioning, elicited a relative protection against high-fat diet-mediated body fat gain and obesity-associated metabolic features. In conclusion, these findings reveal a new key role of VTA NAPE-PLD in shaping DA-dependent events, feeding behaviors and energy homeostasis, thus providing new insights on the regulation of body metabolism.

6.
Biol Psychiatry ; 94(5): 424-436, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36805080

RESUMO

BACKGROUND: A large body of evidence highlights the importance of genetic variants in the development of psychiatric and metabolic conditions. Among these, the TaqIA polymorphism is one of the most commonly studied in psychiatry. TaqIA is located in the gene that codes for the ankyrin repeat and kinase domain containing 1 kinase (Ankk1) near the dopamine D2 receptor (D2R) gene. Homozygous expression of the A1 allele correlates with a 30% to 40% reduction of striatal D2R, a typical feature of addiction, overeating, and other psychiatric pathologies. The mechanisms by which the variant influences dopamine signaling and behavior are unknown. METHODS: Here, we used transgenic and viral-mediated strategies to reveal the role of Ankk1 in the regulation of activity and functions of the striatum. RESULTS: We found that Ankk1 is preferentially enriched in striatal D2R-expressing neurons and that Ankk1 loss of function in the dorsal and ventral striatum leads to alteration in learning, impulsivity, and flexibility resembling endophenotypes described in A1 carriers. We also observed an unsuspected role of Ankk1 in striatal D2R-expressing neurons of the ventral striatum in the regulation of energy homeostasis and documented differential nutrient partitioning in humans with or without the A1 allele. CONCLUSIONS: Overall, our data demonstrate that the Ankk1 gene is necessary for the integrity of striatal functions and reveal a new role for Ankk1 in the regulation of body metabolism.


Assuntos
Comportamento Aditivo , Dopamina , Humanos , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Neurônios/metabolismo , Recompensa
7.
Cell Rep ; 41(8): 111698, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36417883

RESUMO

Therapies based on glucagon-like peptide-1 (GLP-1) long-acting analogs and insulin are often used in the treatment of metabolic diseases. Both insulin and GLP-1 receptors are expressed in metabolically relevant brain regions, suggesting a cooperative action. However, the mechanisms underlying the synergistic actions of insulin and GLP-1R agonists remain elusive. In this study, we show that insulin-induced hypoglycemia enhances GLP-1R agonists entry in hypothalamic and area, leading to enhanced whole-body fat oxidation. Mechanistically, this phenomenon relies on the release of tanycyctic vascular endothelial growth factor A, which is selectively impaired after calorie-rich diet exposure. In humans, low blood glucose also correlates with enhanced blood-to-brain passage of insulin, suggesting that blood glucose gates the passage other energy-related signals in the brain. This study implies that the preventing hyperglycemia is important to harnessing the full benefit of GLP-1R agonist entry in the brain and action onto lipid mobilization and body weight loss.


Assuntos
Glicemia , Fator A de Crescimento do Endotélio Vascular , Humanos , Glicemia/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Insulina/metabolismo , Homeostase , Encéfalo/metabolismo
8.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36232936

RESUMO

Antipsychotics share the common pharmacological feature of antagonizing the dopamine 2 receptor (D2R), which is abundant in the striatum and involved in both the therapeutic and side effects of this drug's class. The pharmacological blockade of striatal D2R, by disinhibiting the D2R-containing medium-sized spiny neurons (MSNs), leads to a plethora of molecular, cellular and behavioral adaptations, which are central in the action of antipsychotics. Here, we focused on the cell type-specific (D2R-MSNs) regulation of some striatal immediate early genes (IEGs), such as cFos, Arc and Zif268. Taking advantage of transgenic mouse models, pharmacological approaches and immunofluorescence analyses, we found that haloperidol-induced IEGs in the striatum required the synergistic activation of A2a (adenosine) and NMDA (glutamate) receptors. At the intracellular signaling level, we found that the PKA/DARPP-32 and mTOR pathways synergistically cooperate to control the induction of IEGs by haloperidol. By confirming and further expanding previous observations, our results provide novel insights into the regulatory mechanisms underlying the molecular/cellular action of antipsychotics in the striatum.


Assuntos
Antipsicóticos , Haloperidol , Adenosina/metabolismo , Animais , Antipsicóticos/metabolismo , Antipsicóticos/farmacologia , Corpo Estriado/metabolismo , Dopamina/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Genes Precoces , Glutamatos/metabolismo , Haloperidol/farmacologia , Camundongos , Camundongos Transgênicos , N-Metilaspartato/metabolismo , Neurônios/metabolismo , Receptores de Dopamina D1/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
9.
J Physiol ; 600(12): 2877-2895, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35648134

RESUMO

The regulation of food intake and energy balance relies on the dynamic integration of exteroceptive and interoceptive signals monitoring nutritional, metabolic, cognitive, and emotional states. The paraventricular thalamus (PVT) is a central hub that, by integrating sensory, metabolic, and emotional states, may contribute to the regulation of feeding and homeostatic/allostatic processes. However, the underlying PVT circuits still remain elusive. Here, we aimed at unravelling the role of catecholaminergic (CA) inputs to the PVT in scaling feeding and metabolic efficiency. First, using region-specific retrograde disruption of CA projections, we show that PVT CA inputs mainly arise from the hindbrain, notably the locus coeruleus (LC) and the nucleus tractus solitarius. Second, taking advantage of integrative calorimetric measurements of metabolic efficiency, we reveal that CA inputs to the PVT scale adaptive feeding and metabolic responses in environmental, behavioural, physiological, and metabolic stress-like contexts. Third, we show that hindbrainTH →PVT inputs contribute to modulating the activity of PVT as well as lateral and dorsomedial hypothalamic neurons. In conclusion, the present study, by assessing the key role of CA inputs to the PVT in scaling homeostatic/allostatic regulations of feeding patterns, reveals the integrative and converging hindbrainTH →PVT paths that contribute to whole-body metabolic adaptations in stress-like contexts. KEY POINTS: The paraventricular thalamus (PVT) is known to receive projections from the hindbrain. Here, we confirm and further extend current knowledge on the existence of hindbrainTH →PVT catecholaminergic inputs, notably from the locus coeruleus and the nucleus tractus solitarius, with the nucleus tractus solitarius representing the main source. Disruption of hindbrainTH →PVT inputs contributes to the modulation of PVT neuron activity. HindbrainTH →PVT inputs scale feeding strategies in environmental, behavioural, physiological, and metabolic stress-like contexts. HindbrainTH →PVT inputs participate in regulating metabolic efficiency and nutrient partitioning in stress-like contexts. HindbrainTH →PVT inputs, directly and/or indirectly, contribute to modulating the downstream activity of lateral and dorsomedial hypothalamic neurons.


Assuntos
Núcleo Solitário , Tálamo , Comportamento Alimentar/fisiologia , Hipotálamo , Neurônios/fisiologia , Núcleo Hipotalâmico Paraventricular , Tálamo/fisiologia
10.
Nat Metab ; 4(4): 410-411, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379971
11.
Mol Psychiatry ; 27(4): 2340-2354, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35075269

RESUMO

The regulation of food intake, a sine qua non requirement for survival, thoroughly shapes feeding and energy balance by integrating both homeostatic and hedonic values of food. Unfortunately, the widespread access to palatable food has led to the development of feeding habits that are independent from metabolic needs. Among these, binge eating (BE) is characterized by uncontrolled voracious eating. While reward deficit seems to be a major contributor of BE, the physiological and molecular underpinnings of BE establishment remain elusive. Here, we combined a physiologically relevant BE mouse model with multiscale in vivo approaches to explore the functional connection between the gut-brain axis and the reward and homeostatic brain structures. Our results show that BE elicits compensatory adaptations requiring the gut-to-brain axis which, through the vagus nerve, relies on the permissive actions of peripheral endocannabinoids (eCBs) signaling. Selective inhibition of peripheral CB1 receptors resulted in a vagus-dependent increased hypothalamic activity, modified metabolic efficiency, and dampened activity of mesolimbic dopamine circuit, altogether leading to the suppression of palatable eating. We provide compelling evidence for a yet unappreciated physiological integrative mechanism by which variations of peripheral eCBs control the activity of the vagus nerve, thereby in turn gating the additive responses of both homeostatic and hedonic brain circuits which govern homeostatic and reward-driven feeding. In conclusion, we reveal that vagus-mediated eCBs/CB1R functions represent an interesting and innovative target to modulate energy balance and counteract food-reward disorders.


Assuntos
Endocanabinoides , Recompensa , Animais , Encéfalo/metabolismo , Ingestão de Alimentos/fisiologia , Endocanabinoides/metabolismo , Comportamento Alimentar/fisiologia , Homeostase/fisiologia , Camundongos , Nervo Vago/metabolismo
12.
Trends Endocrinol Metab ; 32(9): 693-705, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34148784

RESUMO

The abundance of energy-dense and palatable diets in the modern food environment tightly contributes to the obesity pandemic. The reward circuit participates to the regulation of body homeostasis by integrating energy-related signals with neural substrates encoding cognitive and motivational components of feeding behaviors. Obesity and lipid-rich diets alter dopamine (DA) transmission leading to reward dysfunctions and food overconsumption. Recent reports indicate that dietary lipids can act, directly and indirectly, as functional modulators of the DA circuit. This raises the possibility that nutritional or genetic conditions affecting 'lipid sensing' mechanisms might lead to maladaptations of the DA system. Here, we discuss the most recent findings connecting dietary lipid sensing with DA signaling and its multimodal influence on circuits regulating food-reward processes.


Assuntos
Gorduras na Dieta , Comportamento Alimentar , Recompensa , Animais , Dopamina , Humanos
13.
Trends Pharmacol Sci ; 42(6): 475-490, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33775453

RESUMO

Vesicular glutamate transporters (VGLUTs) were long thought to be specific markers of glutamatergic excitatory transmission. The discovery, two decades ago, of the atypical VGLUT3 has thoroughly modified this oversimplified view. VGLUT3 is strategically expressed in discrete populations of glutamatergic, cholinergic, serotonergic, and even GABAergic neurons. Recent reports show the subtle, but critical, implications of VGLUT3-dependent glutamate co-transmission and its roles in the regulation of diverse brain functions and dysfunctions. Progress in the neuropharmacology of VGLUT3 could lead to decisive breakthroughs in the treatment of Parkinson's disease (PD), addiction, eating disorders, anxiety, presbycusis, or pain. This review summarizes recent findings on VGLUT3 and its vesicular underpinnings as well as on possible ways to target this atypical transporter for future therapeutic strategies.


Assuntos
Encefalopatias , Proteínas Vesiculares de Transporte de Glutamato , Encéfalo/metabolismo , Ácido Glutâmico , Humanos , Proteínas Vesiculares de Transporte de Glutamato/metabolismo
14.
Environ Pollut ; 278: 116755, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33725534

RESUMO

Epidemiological indications connect maternal and developmental presence or exposure to pesticides with an increased risk for a spectrum of neurological trajectories. To provide pre-clinical data in support of this hypothesis, we used two distinct experimental models. First, female and male mice were fed immediately prior to mating, and the resulting pregnant dams were continously fed during gestation and lactation periods using chow pellets containing a cocktail of six pesticides at tolerable daily intake levels. Male and female offspring were then tracked for behavioral and in vivo electrophysiological adaptations. Second, a zebrafish model allowed us to screen toxicity and motor-behavior outcomes specifically associated with the developmental exposure to a low-to-high concentration range of the cocktail and of each individual pesticide. Here, we report anxiety-like behavior in aging male mice maternally exposed to the cocktail, as compared to age and gender matched sham animals. In parallel, in vivo electrocorticography revealed a decrease in gamma (40-80 Hz) and an increase of theta (6-9 Hz) waves, delineating a long-term, age-dependent, neuronal slowing. Neurological changes were not accompanied by brain structural malformations. Next, by using zebrafish larvae, we showed an increase of all motor-behavioral parameters resulting from the developmental exposure to 10 µg/L of pesticide cocktail, an outcome that was not associated with midbrain structural or neurovascular modifications as assessed by in vivo 2-photon microscopy. When screening each pesticide, chlorpyrifos elicited modifications of swimming parameters at 0.1 µg/L, while other components provoked changes from 0.5 µg/L. Ziram was the single most toxic component inducing developmental malformations and mortality at 10 µg/L. Although we have employed non-equivalent modalities and timing of exposure in two dissimilar experimental models, these outcomes indicate that presence of a pesticide cocktail during perinatal periods represents an element promoting behavioral and neurophysiological modifications. The study limitations and the possible pertinence of our findings to ecotoxicology and public health are critically discussed.


Assuntos
Clorpirifos , Praguicidas , Animais , Feminino , Larva , Masculino , Camundongos , Nível de Efeito Adverso não Observado , Praguicidas/toxicidade , Peixe-Zebra
15.
Trends Neurosci ; 44(3): 203-214, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33243489

RESUMO

The dorsal striatum, the largest subcortical structure of the basal ganglia, is critical in controlling motor, procedural, and reinforcement-based behaviors. Although in mammals the striatum extends widely along the rostro-caudal axis, current knowledge and derived theories about its anatomo-functional organization largely rely on results obtained from studies of its rostral sectors, leading to potentially oversimplified working models of the striatum as a whole. Recent findings indicate that the extreme caudal part of the striatum, also referred to as the tail of striatum (TS), represents an additional functional domain. Here, we provide an overview of past and recent studies revealing that the TS displays a heterogeneous cell-type-specific organization, and a unique input-output connectivity, which poises the TS as an integrator of sensory processing.


Assuntos
Gânglios da Base , Corpo Estriado , Animais
16.
Cell Metab ; 32(5): 701-703, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33147483

RESUMO

Neurons within the arcuate nucleus control energy balance and represent the functional substrates through which FGF1 deploys its anti-diabetic action. Alonge et al. (2020) now report that the integrity of arcuate perineuronal nets, an extracellular matrix component that enmeshes GABAergic neurons, is reversibly altered in diabetic rats and a key component for FGF1-mediated diabetic remission. These novel insights unravel how perineuronal nets dynamically contribute to the central control of glycemia.


Assuntos
Diabetes Mellitus Experimental , Fator 1 de Crescimento de Fibroblastos , Animais , Matriz Extracelular , Homeostase , Hipotálamo , Ratos
17.
Neuroscience ; 446: 225-237, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32736067

RESUMO

Exposure to environmental contaminants is a public health concern. However, pre-clinical studies that examine the impact of pesticides at low-dose and the long-term consequences are uncommon. Here, C57BL6/j male and female mice were daily fed from weaning and up to 12 months, corresponding to early-childhood into middle-age in humans, using chow pellets containing a cocktail of pesticides at tolerable daily intake levels. We found that 12 months of dietary exposure to pesticides was associated with a moderate perenchymal or perivascular astrogliosis in specific hippocampal sub-regions. The expression of platelet-derived growth factor receptor beta was modified at the perivascular level. Examination of Iba1+ microglial cells did not reveal sizeable changes. Concomitantly to astrogliosis, spontaneous spatial memory and sociability were modified in males at 12 months of dietary exposure to pesticides. Telemetry electrocorticograhic explorations ruled out the presence of epileptiform activity or theta-gamma wave modifications in these conditions. Long-term pesticides impacted the periphery where the hepatic P450 metabolic cytochromes Cyp4a14 and Cyp4a10 were significantly upregulated in male and female mice during the 12 months of exposure. The expression of ß-oxidation genes, such as Acox1, Cpt1a and Eci, was also significantly increased in male and female mice in response to pesticides. Collectively, our results indicate that a life-long exposure to a pesticide cocktail elicits sex-dependent, spatio-temporally restricted brain modifications and significant activation of P450 pathways in the periphery. These brain-peripheral adjustments are discussed as time or age-dependent vulnerability elements.


Assuntos
Praguicidas , Animais , Dieta , Feminino , Gliose , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos C57BL , Praguicidas/toxicidade
18.
Nat Commun ; 11(1): 2388, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404907

RESUMO

Deep brain stimulation (DBS) of the subthalamic nucleus is a symptomatic treatment of Parkinson's disease but benefits only to a minority of patients due to stringent eligibility criteria. To investigate new targets for less invasive therapies, we aimed at elucidating key mechanisms supporting deep brain stimulation efficiency. Here, using in vivo electrophysiology, optogenetics, behavioral tasks and mathematical modeling, we found that subthalamic stimulation normalizes pathological hyperactivity of motor cortex pyramidal cells, while concurrently activating somatostatin and inhibiting parvalbumin interneurons. In vivo opto-activation of cortical somatostatin interneurons alleviates motor symptoms in a parkinsonian mouse model. A computational model highlights that a decrease in pyramidal neuron activity induced by DBS or by a stimulation of cortical somatostatin interneurons can restore information processing capabilities. Overall, these results demonstrate that activation of cortical somatostatin interneurons may constitute a less invasive alternative than subthalamic stimulation.


Assuntos
Estimulação Encefálica Profunda/métodos , Levodopa/uso terapêutico , Transtornos Parkinsonianos/terapia , Somatostatina/metabolismo , Algoritmos , Animais , Antiparkinsonianos/uso terapêutico , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Córtex Motor/efeitos dos fármacos , Córtex Motor/metabolismo , Córtex Motor/fisiopatologia , Optogenética/métodos , Oxidopamina , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/fisiopatologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Núcleo Subtalâmico/efeitos dos fármacos , Núcleo Subtalâmico/metabolismo , Núcleo Subtalâmico/fisiopatologia
19.
Cell Metab ; 31(4): 773-790.e11, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32142669

RESUMO

Energy-dense food alters dopaminergic (DA) transmission in the mesocorticolimbic (MCL) system and can promote reward dysfunctions, compulsive feeding, and weight gain. Yet the mechanisms by which nutrients influence the MCL circuitry remain elusive. Here, we show that nutritional triglycerides (TGs), a conserved post-prandial metabolic signature among mammals, can be metabolized within the MCL system and modulate DA-associated behaviors by gating the activity of dopamine receptor subtype 2 (DRD2)-expressing neurons through a mechanism that involves the action of the lipoprotein lipase (LPL). Further, we show that in humans, post-prandial TG excursions modulate brain responses to food cues in individuals carrying a genetic risk for reduced DRD2 signaling. Collectively, these findings unveil a novel mechanism by which dietary TGs directly alter signaling in the reward circuit to regulate behavior, thereby providing a new mechanistic basis by which energy-rich diets may lead to (mal)adaptations in DA signaling that underlie reward deficit and compulsive behavior.


Assuntos
Motivação , Neurônios , Receptores de Dopamina D2/metabolismo , Triglicerídeos/metabolismo , Adolescente , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/metabolismo , Adulto Jovem
20.
Cereb Cortex ; 30(1): 197-214, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31329835

RESUMO

The dorsal striatum exhibits bidirectional corticostriatal synaptic plasticity, NMDAR and endocannabinoids (eCB) mediated, necessary for the encoding of procedural learning. Therefore, characterizing factors controlling corticostriatal plasticity is of crucial importance. Brain-derived neurotrophic factor (BDNF) and its receptor, the tropomyosine receptor kinase-B (TrkB), shape striatal functions, and their dysfunction deeply affects basal ganglia. BDNF/TrkB signaling controls NMDAR plasticity in various brain structures including the striatum. However, despite cross-talk between BDNF and eCBs, the role of BDNF in eCB plasticity remains unknown. Here, we show that BDNF/TrkB signaling promotes eCB-plasticity (LTD and LTP) induced by rate-based (low-frequency stimulation) or spike-timing-based (spike-timing-dependent plasticity, STDP) paradigm in striatum. We show that TrkB activation is required for the expression and the scaling of both eCB-LTD and eCB-LTP. Using 2-photon imaging of dendritic spines combined with patch-clamp recordings, we show that TrkB activation prolongs intracellular calcium transients, thus increasing eCB synthesis and release. We provide a mathematical model for the dynamics of the signaling pathways involved in corticostriatal plasticity. Finally, we show that TrkB activation enlarges the domain of expression of eCB-STDP. Our results reveal a novel role for BDNF/TrkB signaling in governing eCB-plasticity expression in striatum and thus the engram of procedural learning.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Endocanabinoides/fisiologia , Neostriado/fisiologia , Plasticidade Neuronal , Receptor trkB/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Modelos Neurológicos , Vias Neurais/fisiologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA