Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38006449

RESUMO

The peritoneal cavity offers an attractive administration route for challenging-to-treat diseases, such as peritoneal carcinomatosis, post-surgical adhesions, and peritoneal fibrosis. Achieving a uniform and prolonged drug distribution throughout the entire peritoneal space, though, is difficult due to high clearance rates, among others. To address such an unmet clinical need, alternative drug delivery approaches providing sustained drug release, reduced clearance rates, and a patient-centric strategy are required. Here, we describe the development of a 3D-printed composite platform for the sustained release of the tyrosine kinase inhibitor gefitinib (GEF), a small molecule drug with therapeutic applications for peritoneal metastasis and post-surgical adhesions. We present a robust method for the production of biodegradable liposome-loaded hydrogel microbeads that can overcome the pharmacokinetic limitations of small molecules with fast clearance rates, a current bottleneck for the intraperitoneal (IP) administration of these therapeutics. By means of an electromagnetic droplet printhead, we 3D printed microbeads employing an alginate-based ink loaded with GEF-containing multilamellar vesicles (MLVs). The sustained release of GEF from microbeads was demonstrated. In vitro studies on an immortalized human hepatic cancer cell line (Huh-7) proved concentration-dependent cell death. These findings demonstrate the potential of 3D-printed alginate microbeads containing liposomes for delivering small drug compounds into the peritoneum, overcoming previous limitations of IP drug delivery.

2.
Int J Pharm ; 646: 123473, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37788730

RESUMO

Liver fibrosis is a condition characterized by the accumulation of extracellular matrix (ECM) arising from the myofibroblastic transdifferentiation of hepatic stellate cells (HSCs) occurring as the natural response to liver damage. To date, no pharmacological treatments have been specifically approved for liver fibrosis. We recently reported a beneficial effect of polyenylphosphatidylcholines (PPCs)-rich formulations in reverting fibrogenic features of HSCs. However, unsaturated phospholipids' properties pose a constant challenge to the development of tablets as preferred patient-centric dosage form. Profiting from the advantageous physical properties of the PPCs-rich Soluthin® S 80 M, we developed a tablet formulation incorporating 70% w/w of this bioactive lipid. Tablets were characterized via X-ray powder diffraction, thermogravimetry, and Raman confocal imaging, and passed the major compendial requirements. To mimic physiological absorption after oral intake, phospholipids extracted from tablets were reconstituted as protein-free chylomicron (PFC)-like emulsions and tested on the fibrogenic human HSC line LX-2 and on primary cirrhotic rat hepatic stellate cells (PRHSC). Lipids extracted from tablets and reconstituted in buffer or as PFC-like emulsions exerted the same antifibrotic effect on both activated LX-2 and PRHSCs as observed with plain S 80 M liposomes, showing that the manufacturing process did not interfere with the bioactivity of PPCs.


Assuntos
Excipientes , Fígado , Humanos , Ratos , Animais , Excipientes/farmacologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Comprimidos/farmacologia , Células Estreladas do Fígado
3.
Adv Healthc Mater ; 12(30): e2300811, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37669775

RESUMO

A new therapeutic approach using cell-derived nanovesicles (cdNVs) is offered here to overcome the lack of effective treatments for liver fibrosis, a reversible chronic liver disease. To achieve this goal the formation and purification of cdNVs from untreated, quiescent-like, or activated LX-2 cells, an immortalized human hepatic stellate cell (HSC) line with key features of transdifferentiated HSCs are established. Analysis of the genotype and phenotype of naïve and transdifferentiated LX-2 cells activated through transforming growth factor beta 1, following treatment with cdNVs, reveals a concentration-dependent fibrosis regression. The beneficial fibrosis-resolving effects of cdNVs are linked to their biomolecular corona. Liposomes generated using lipids extracted from cdNVs exhibit a reduced antifibrotic response in perpetuated LX-2 cells and show a reduced cellular uptake. However, incubation with soluble factors collected during purification results in a new corona, thereby restoring fibrosis regression activity. Overall, cdNVs display encouraging therapeutic properties, making them a promising candidate for the development of liver fibrosis resolving therapeutics.


Assuntos
Cirrose Hepática , Fígado , Humanos , Cirrose Hepática/tratamento farmacológico , Fígado/metabolismo , Linhagem Celular , Fibrose , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia
4.
Chimia (Aarau) ; 72(5): 291-296, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29789065

RESUMO

Our group at the University of Bern uses biochemical and biophysical techniques to unravel details of the molecular mechanism of membrane proteins. Of special interest are the large multi-subunit complexes of the universally conserved respiratory chain and the ATP synthase that are found in mitochondria and aerobic bacteria. In a bottom-up approach using purified membrane proteins and synthetic lipids, we aim to mimic the basic processes of oxidative phosphorylation. We further develop methodologies to increase the complexity of such artificial systems, paving the way for a synthetic mitochondrion. In this minireview, we summarize recent efforts of our groups and others towards a synthetic respiratory chain.


Assuntos
Mitocôndrias , Transporte de Elétrons , Fosforilação Oxidativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA