Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Neurophysiol ; 145: 89-97, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462473

RESUMO

OBJECTIVE: Epileptiform activity is common in critically ill patients, but movement-related artifacts-including electromyography (EMG) and myoclonus-can obscure EEG, limiting detection of epileptiform activity. We sought to determine the ability of pharmacologic paralysis and quantitative artifact reduction (AR) to improve epileptiform discharge detection. METHODS: Retrospective analysis of patients who underwent continuous EEG monitoring with pharmacologic paralysis. Four reviewers read each patient's EEG pre- and post- both paralysis and AR, and indicated the presence of epileptiform discharges. We compared the interrater reliability (IRR) of identifying discharges at baseline, post-AR, and post-paralysis, and compared the performance of AR and paralysis according to artifact type. RESULTS: IRR of identifying epileptiform discharges at baseline was slight (N = 30; κ = 0.10) with a trend toward increase post-AR (κ = 0.26, p = 0.053) and a significant increase post-paralysis (κ = 0.51, p = 0.001). AR was as effective as paralysis at improving IRR of identifying discharges in those with high EMG artifact (N = 15; post-AR κ = 0.63, p = 0.009; post-paralysis κ = 0.62, p = 0.006) but not with primarily myoclonus artifact (N = 15). CONCLUSIONS: Paralysis improves detection of epileptiform activity in critically ill patients when movement-related artifact obscures EEG features. AR improves detection as much as paralysis when EMG artifact is high, but is ineffective when the primary source of artifact is myoclonus. SIGNIFICANCE: In the appropriate setting, both AR and paralysis facilitate identification of epileptiform activity in critically ill patients.


Assuntos
Eletroencefalografia , Mioclonia , Humanos , Artefatos , Estado Terminal , Estudos Retrospectivos , Mioclonia/diagnóstico , Reprodutibilidade dos Testes , Paralisia/diagnóstico
2.
J Clin Neurophysiol ; 39(6): 459-465, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33298682

RESUMO

INTRODUCTION: The authors tested the hypothesis that the EEG feature generalized polyspike train (GPT) is associated with drug-resistant idiopathic generalized epilepsy (IGE). METHODS: The authors conducted a single-center case-control study of patients with IGE who had outpatient EEGs performed between 2016 and 2020. The authors classified patients as drug-resistant or drug-responsive based on clinical review and in a masked manner reviewed EEG data for the presence and timing of GPT (a burst of generalized rhythmic spikes lasting less than 1 second) and other EEG features. A relationship between GPT and drug resistance was tested before and after controlling for EEG duration. The EEG duration needed to observe GPT was also calculated. RESULTS: One hundred three patients were included (70% drug-responsive and 30% drug-resistant patients). Generalized polyspike train was more prevalent in drug-resistant IGE (odds ratio, 3.8; 95% confidence interval, 1.3-11.4; P = 0.02). This finding persisted when controlling for EEG duration both with stratification and with survival analysis. A median of 6.5 hours (interquartile range, 0.5-12.7 hours) of EEG recording was required to capture the first occurrence of GPT. CONCLUSIONS: The findings support the hypothesis that GPT is associated with drug-resistant IGE. Prolonged EEG recording is required to identify this feature. Thus, >24-hour EEG recording early in the evaluation of patients with IGE may facilitate prognostication.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia Generalizada , Estudos de Casos e Controles , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Eletroencefalografia , Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/tratamento farmacológico , Humanos , Imunoglobulina E
3.
Crit Care Explor ; 3(7): e0476, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34278312

RESUMO

Continuous electroencephalogram monitoring is associated with lower mortality in critically ill patients; however, it is underused due to the resource-intensive nature of manually interpreting prolonged streams of continuous electroencephalogram data. Here, we present a novel real-time, machine learning-based alerting and monitoring system for epilepsy and seizures that dramatically reduces the amount of manual electroencephalogram review. METHODS: We developed a custom data reduction algorithm using a random forest and deployed it within an online cloud-based platform, which streams data and communicates interactively with caregivers via a web interface to display algorithm results. We developed real-time, machine learning-based alerting and monitoring system for epilepsy and seizures on continuous electroencephalogram recordings from 77 patients undergoing routine scalp ICU electroencephalogram monitoring and tested it on an additional 20 patients. RESULTS: We achieved a mean seizure sensitivity of 84% in cross-validation and 85% in testing, as well as a mean specificity of 83% in cross-validation and 86% in testing, corresponding to a high level of data reduction. This study validates a platform for machine learning-assisted continuous electroencephalogram analysis and represents a meaningful step toward improving utility and decreasing cost of continuous electroencephalogram monitoring. We also make our high-quality annotated dataset of 97 ICU continuous electroencephalogram recordings public for others to validate and improve upon our methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA