Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 50(8): 6311-6321, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37306873

RESUMO

BACKGROUND: Cinnamomum verum (true cinnamon) and Cinnamomum cassia (cassia cinnamon) are two important species belonging to family Lauraceae. These species are recognized by morphological, chemical composition and essential oil contents. The appropriate identification of species would be considerably improved by a genetic method. The main objective of the present study was to develop molecular markers distinguishing between C. verum and C. cassia. METHODS AND RESULTS: A total 71 ISSR (Inter simple sequence repeat) and four universal barcoding (ITS, rbcL, matK, and psbA-trnH) genes were used to distinguish both the species. No sequence variation was observed between the two species for any DNA barcode gene. However, one ISSR i.e. ISSR-37 showed a clear distinction between the species and produced 570 bp and 746 bp amplicons in C. verum and C. cassia, respectively. The polymorphic bands were converted into species-specific SCAR markers. The SCAR-CV was specific to C. verum and amplified 190 bp band, however there was no amplification seen in the C. cassia samples. CONCLUSION: The SCAR marker generated in this study can be employed as efficient, economical, and reliable molecular tool for the identification of C. verum.


Assuntos
Cinnamomum aromaticum , Lauraceae , Óleos Voláteis , Cinnamomum zeylanicum/química , Código de Barras de DNA Taxonômico/métodos
2.
Front Plant Sci ; 13: 1021297, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407582

RESUMO

The Myo-Inositol-1-phosphate synthase (MIPS) gene family is involved in the myo-inositol synthesis and plays a significant role in signal transduction, membrane biogenesis, oligosaccharides synthesis, auxin storage and transport, programmed cell death and abiotic stress tolerance in plants. This study comprehensively identified the MIPS genes in Rosaceae plant species, and 51 MIPS genes were identified from 26 Rosaceae species. The phylogenetic analysis divided the MIPSs into two clades (clade I; subfamily Amygdaloideae specific, and clade II; subfamily Rosoideae specific). MIPS genes of all 26 Rosaceae species consist of similar gene structure, motif and domain composition, which shows their conserved nature. The cis-regulatory elements (CREs) analysis revealed that most Rosaceae MIPS genes play a role in growth, development, and stress responses. Furthermore, the qRT-PCR analysis also revealed the involvement of RcMIPS gene in plant development and response to abiotic stresses, including drought and heat. The results of the present study contribute to the understanding of the biological function of Rosaceae MIPS genes, and that could be used in further functional validations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA