Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 601(18): 4121-4133, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37598301

RESUMO

Glycine receptors (GlyRs), together with GABAA receptors, mediate postsynaptic inhibition in most spinal cord and hindbrain neurons. In several CNS regions, GlyRs are also expressed in presynaptic terminals. Here, we analysed the effects of a phospho-deficient mutation (S346A) in GlyR α3 subunits on inhibitory synaptic transmission in superficial spinal dorsal horn neurons, where this subunit is abundantly expressed. Unexpectedly, we found that not only were the amplitudes of evoked glycinergic inhibitory postsynaptic currents (IPSCs) significantly larger in GlyRα3(S346A) mice than in mice expressing wild-type α3GlyRs (GlyRα3(WT) mice), but so were those of GABAergic IPSCs. Decreased frequencies of spontaneously occurring glycinergic and GABAergic miniature IPSCs (mIPSCs) with no accompanying change in mIPSC amplitudes suggested a change in presynaptic transmitter release. Paired-pulse experiments on glycinergic IPSCs revealed an increased paired-pulse ratio and a smaller coefficient of variation in GlyRα3(S346A) mice, which together indicate a reduction in transmitter release probability and an increase in the number of releasable vesicles. Paired-pulse ratios of GABAergic IPSCs recorded in the presence of strychnine were not different between genotypes, while the coefficient of variation was smaller in GlyRα3(S346A) mice, demonstrating that the decrease in release probability was readily reversible by GlyR blockade, while the difference in the size of the pool of releasable vesicles remained. Taken together, our results suggest that presynaptic α3 GlyRs regulate synaptic glycine and GABA release in superficial dorsal horn neurons, and that this effect is potentially regulated by their phosphorylation status. KEY POINTS: A serine-to-alanine point mutation was introduced into the glycine receptor α3 subunit of mice. This point mutation renders α3 glycine receptors resistant to protein kinase A mediated phosphorylation but has otherwise only small effects on receptor function. Patch-clamp recordings from neurons in mouse spinal cord slices revealed an unexpected increase in the amplitudes of both glycinergic and GABAergic evoked inhibitory postsynaptic currents (IPSCs). Miniature IPSCs, paired-pulse ratios and synaptic variation analyses indicate a change in synaptic glycine and GABA release. The results strongly suggest that α3 subunit-containing glycine receptors are expressed on presynaptic terminals of inhibitory dorsal horn neurons where they regulate transmitter release.


Assuntos
Glicina , Receptores de Glicina , Animais , Camundongos , Ácido gama-Aminobutírico , Mutação , Células do Corno Posterior , Receptores de GABA-A/genética , Receptores de Glicina/genética , Transmissão Sináptica
2.
Cell Rep ; 42(4): 112295, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36947543

RESUMO

Corticospinal tract (CST) neurons innervate the deep spinal dorsal horn to sustain chronic neuropathic pain. The majority of neurons targeted by the CST are interneurons expressing the transcription factor c-Maf. Here, we used intersectional genetics to decipher the function of these neurons in dorsal horn sensory circuits. We find that excitatory c-Maf (c-MafEX) neurons receive sensory input mainly from myelinated fibers and target deep dorsal horn parabrachial projection neurons and superficial dorsal horn neurons, thereby connecting non-nociceptive input to nociceptive output structures. Silencing c-MafEX neurons has little effect in healthy mice but alleviates mechanical hypersensitivity in neuropathic mice. c-MafEX neurons also receive input from inhibitory c-Maf and parvalbumin neurons, and compromising inhibition by these neurons caused mechanical hypersensitivity and spontaneous aversive behaviors reminiscent of c-MafEX neuron activation. Our study identifies c-MafEX neurons as normally silent second-order nociceptors that become engaged in pathological pain signaling upon loss of inhibitory control.


Assuntos
Neuralgia , Corno Dorsal da Medula Espinal , Animais , Camundongos , Corno Dorsal da Medula Espinal/patologia , Medula Espinal , Células do Corno Posterior/fisiologia , Transmissão Sináptica , Interneurônios/fisiologia , Proteínas Proto-Oncogênicas c-maf
3.
Brain Pathol ; 33(1): e13099, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35698024

RESUMO

Cerebral ischemia is the leading cause for long-term disability and mortality in adults due to massive neuronal death. Currently, there is no pharmacological treatment available to limit progressive neuronal death after stroke. A major mechanism causing ischemia-induced neuronal death is the excessive release of glutamate and the associated overexcitation of neurons (excitotoxicity). Normally, GABAB receptors control neuronal excitability in the brain via prolonged inhibition. However, excitotoxic conditions rapidly downregulate GABAB receptors via a CaMKII-mediated mechanism and thereby diminish adequate inhibition that could counteract neuronal overexcitation and neuronal death. To prevent the deleterious downregulation of GABAB receptors, we developed a cell-penetrating synthetic peptide (R1-Pep) that inhibits the interaction of GABAB receptors with CaMKII. Administration of this peptide to cultured cortical neurons exposed to excitotoxic conditions restored cell surface expression and function of GABAB receptors. R1-Pep did not affect CaMKII expression or activity but prevented its T286 autophosphorylation that renders it autonomously and persistently active. Moreover, R1-Pep counteracted the aberrant downregulation of G protein-coupled inwardly rectifying K+ channels and the upregulation of N-type voltage-gated Ca2+ channels, the main effectors of GABAB receptors. The restoration of GABAB receptors activated the Akt survival pathway and inhibited excitotoxic neuronal death with a wide time window in cultured neurons. Restoration of GABAB receptors and neuroprotective activity of R1-Pep was verified by using brain slices prepared from mice after middle cerebral artery occlusion (MCAO). Treatment with R1-Pep restored normal GABAB receptor expression and GABA receptor-mediated K+ channel currents. This reduced MCAO-induced neuronal excitability and inhibited neuronal death. These results support the hypothesis that restoration of GABAB receptor expression under excitatory conditions provides neuroprotection and might be the basis for the development of a selective intervention to inhibit progressive neuronal death after ischemic stroke.


Assuntos
Isquemia Encefálica , Receptores de GABA-B , Camundongos , Animais , Receptores de GABA-B/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto Cerebral , Peptídeos , Encéfalo/metabolismo , Ácido gama-Aminobutírico/metabolismo
4.
Neuron ; 111(1): 92-105.e5, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36323322

RESUMO

Proper sensing of ambient temperature is of utmost importance for the survival of euthermic animals, including humans. While considerable progress has been made in our understanding of temperature sensors and transduction mechanisms, the higher-order neural circuits processing such information are still only incompletely understood. Using intersectional genetics in combination with circuit tracing and functional neuron manipulation, we identified Kcnip2-expressing inhibitory (Kcnip2GlyT2) interneurons of the mouse spinal dorsal horn as critical elements of a neural circuit that tunes sensitivity to cold. Diphtheria toxin-mediated ablation of these neurons increased cold sensitivity without affecting responses to other somatosensory modalities, while their chemogenetic activation reduced cold and also heat sensitivity. We also show that Kcnip2GlyT2 neurons become activated preferentially upon exposure to cold temperatures and subsequently inhibit spinal nociceptive output neurons that project to the lateral parabrachial nucleus. Our results thus identify a hitherto unknown spinal circuit that tunes cold sensitivity.


Assuntos
Temperatura Baixa , Corno Dorsal da Medula Espinal , Humanos , Camundongos , Animais , Neurônios , Interneurônios/fisiologia , Células do Corno Posterior/fisiologia , Proteínas Interatuantes com Canais de Kv
5.
Front Aging Neurosci ; 14: 825996, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35585865

RESUMO

In primary tauopathies, the deposition of tau neurofibrillary tangles and threads as well as neurodegenerative changes have been found within the brain and spinal cord. While degenerative changes have been intensively studied in the brain using structural magnetic resonance imaging (MRI), MRI studies investigating the spinal cord are still scarce. In the present study, we acquired ex vivo high resolution structural MRI of the cervical spinal cord of 8.5-9 month old hemizygous and homozygous P301L mice and non-transgenic littermates of both genders. We assessed the total cross-sectional area, and the gray and white matter anterior-posterior width and left-right width that are established imaging marker of spinal cord degeneration. We observed significant tissue-specific reductions in these parameters in female P301L mice that were stronger in homozygous than in hemizygous P301L mice, indicating both an effect of gender and transgene expression on cervical spinal cord atrophy. Moreover, atrophy was stronger in the gray matter than in the white matter. Immunohistochemical analysis revealed neurodegenerative and neuroinflammatory changes in the cervical spinal cord in both the gray and white matter of P301L mice. Collectively, our results provide evidence for cervical spinal cord atrophy that may directly contribute to the motor signs associated with tauopathy.

6.
Mol Pain ; 17: 17448069211037887, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34344259

RESUMO

BACKGROUND: The locus coeruleus (LC) is the principal source of noradrenaline (NA) in the central nervous system. Projection neurons in the ventral portion of the LC project to the spinal cord and are considered the main source of spinal NA. To understand the precise physiology of this pathway, it is important to have tools that allow specific genetic access to these descending projections. AAV2retro serotype vectors are a potential tool to transduce these neurons via their axon terminals in the spinal cord, and thereby limit the expression of genetic material to the spinal projections from the LC. Here, we assess the suitability of AAV2retro to target these neurons and investigate strategies to increase their labelling efficiency. RESULTS: We show that the neurons in the LC that project to the spinal dorsal horn are largely resistant to transduction with AAV2retro serotype vectors. Compared to Cholera toxin B (CTb) tracing, AAV2retro.eGFP labelled far fewer neurons within the LC and surrounding regions, particularly within neurons that express tyrosine hydroxylase (TH), the rate-limiting enzyme for NA synthesis. We also show that the sensitivity for transduction of this projection can be increased using AAV2retro.eGFP.cre in ROSA26tdTom reporter mice (23% increase), with a higher proportion of the newly revealed neurons expressing TH compared to those directly labelled with AAV2retro containing an eGFP expression sequence. CONCLUSION: These tracing studies identify limitations in AAV2retro-mediated retrograde transduction of a subset of projection neurons, specifically those that express NA and project to the spinal cord. This is likely to have implications for the study of NA-containing projections as well as other types of projection neuron in the central nervous system.


Assuntos
Neurônios Adrenérgicos , Locus Cerúleo , Animais , Camundongos , Norepinefrina , Terminações Pré-Sinápticas , Medula Espinal , Corno Dorsal da Medula Espinal
7.
Cell Rep ; 28(2): 526-540.e6, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31291586

RESUMO

Chronic pain presents a major unmet clinical problem. The development of more effective treatments is hindered by our limited understanding of the neuronal circuits underlying sensory perception. Here, we show that parvalbumin (PV)-expressing dorsal horn interneurons modulate the passage of sensory information conveyed by low-threshold mechanoreceptors (LTMRs) directly via presynaptic inhibition and also gate the polysynaptic relay of LTMR input to pain circuits by inhibiting lamina II excitatory interneurons whose axons project into lamina I. We show changes in the functional properties of these PV interneurons following peripheral nerve injury and that silencing these cells unmasks a circuit that allows innocuous touch inputs to activate pain circuits by increasing network activity in laminae I-IV. Such changes are likely to result in the development of tactile allodynia and could be targeted for more effective treatment of mechanical pain.


Assuntos
Hiperalgesia/genética , Bainha de Mielina/patologia , Animais , Dor Crônica , Mecanorreceptores , Camundongos
8.
Pain ; 157(3): 598-612, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26882346

RESUMO

The spinal dorsal horn contains numerous inhibitory interneurons that control transmission of somatosensory information. Although these cells have important roles in modulating pain, we still have limited information about how they are incorporated into neuronal circuits, and this is partly due to difficulty in assigning them to functional populations. Around 15% of inhibitory interneurons in laminae I-III express neuropeptide Y (NPY), but little is known about this population. We therefore used a combined electrophysiological/morphological approach to investigate these cells in mice that express green fluorescent protein (GFP) under control of the NPY promoter. We show that GFP is largely restricted to NPY-immunoreactive cells, although it is only expressed by a third of those in lamina I-II. Reconstructions of recorded neurons revealed that they were morphologically heterogeneous, but never islet cells. Many NPY-GFP cells (including cells in lamina III) appeared to be innervated by C fibres that lack transient receptor potential vanilloid-1, and consistent with this, we found that some lamina III NPY-immunoreactive cells were activated by mechanical noxious stimuli. Projection neurons in lamina III are densely innervated by NPY-containing axons. Our results suggest that this input originates from a small subset of NPY-expressing interneurons, with the projection cells representing only a minority of their output. Taken together with results of previous studies, our findings indicate that somatodendritic morphology is of limited value in classifying functional populations among inhibitory interneurons in the dorsal horn. Because many NPY-expressing cells respond to noxious stimuli, these are likely to have a role in attenuating pain and limiting its spread.


Assuntos
Interneurônios/metabolismo , Inibição Neural/fisiologia , Neuropeptídeo Y/biossíntese , Corno Dorsal da Medula Espinal/citologia , Corno Dorsal da Medula Espinal/metabolismo , Animais , Fenômenos Eletrofisiológicos/fisiologia , Feminino , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/biossíntese , Humanos , Interneurônios/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuropeptídeo Y/análise , Técnicas de Cultura de Órgãos , Células do Corno Posterior/química , Células do Corno Posterior/metabolismo , Corno Dorsal da Medula Espinal/química
9.
J Neurosci ; 35(19): 7626-42, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25972186

RESUMO

The superficial dorsal horn of the spinal cord contains numerous inhibitory interneurons, which regulate the transmission of information perceived as touch, pain, or itch. Despite the importance of these cells, our understanding of their roles in the neuronal circuitry is limited by the difficulty in identifying functional populations. One group that has been identified and characterized consists of cells in the mouse that express green fluorescent protein (GFP) under control of the prion protein (PrP) promoter. Previous reports suggested that PrP-GFP cells belonged to a single morphological class (central cells), received inputs exclusively from unmyelinated primary afferents, and had axons that remained in lamina II. However, we recently reported that the PrP-GFP cells expressed neuronal nitric oxide synthase (nNOS) and/or galanin, and it has been shown that nNOS-expressing cells are more diverse in their morphology and synaptic connections. We therefore used a combined electrophysiological, pharmacological, and anatomical approach to reexamine the PrP-GFP cells. We provide evidence that they are morphologically diverse (corresponding to "unclassified" cells) and receive synaptic input from a variety of primary afferents, with convergence onto individual cells. We also show that their axons project into adjacent laminae and that they target putative projection neurons in lamina I. This indicates that the neuronal circuitry involving PrP-GFP cells is more complex than previously recognized, and suggests that they are likely to have several distinct roles in regulating the flow of somatosensory information through the dorsal horn.


Assuntos
Vias Aferentes/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Interneurônios/metabolismo , Príons/metabolismo , Medula Espinal/citologia , Animais , Fenômenos Biofísicos/efeitos dos fármacos , Fenômenos Biofísicos/genética , Capsaicina/farmacologia , Feminino , Proteínas de Fluorescência Verde/genética , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Neurotransmissores/farmacologia , Óxido Nítrico Sintase Tipo I/metabolismo , Proteínas Oncogênicas v-fos/genética , Proteínas Oncogênicas v-fos/metabolismo , Príons/genética , Receptores da Neurocinina-1/metabolismo , Fármacos do Sistema Sensorial/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA