Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
J Appl Crystallogr ; 56(Pt 3): 868-883, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37284258

RESUMO

Polarized resonant soft X-ray scattering (P-RSoXS) has emerged as a powerful synchrotron-based tool that combines the principles of X-ray scattering and X-ray spectroscopy. P-RSoXS provides unique sensitivity to molecular orientation and chemical heterogeneity in soft materials such as polymers and biomaterials. Quantitative extraction of orientation information from P-RSoXS pattern data is challenging, however, because the scattering processes originate from sample properties that must be represented as energy-dependent three-dimensional tensors with heterogeneities at nanometre to sub-nanometre length scales. This challenge is overcome here by developing an open-source virtual instrument that uses graphical processing units (GPUs) to simulate P-RSoXS patterns from real-space material representations with nanoscale resolution. This computational framework - called CyRSoXS (https://github.com/usnistgov/cyrsoxs) - is designed to maximize GPU performance, including algorithms that minimize both communication and memory footprints. The accuracy and robustness of the approach are demonstrated by validating against an extensive set of test cases, which include both analytical solutions and numerical comparisons, demonstrating an acceleration of over three orders of magnitude relative to the current state-of-the-art P-RSoXS simulation software. Such fast simulations open up a variety of applications that were previously computationally unfeasible, including pattern fitting, co-simulation with the physical instrument for operando analytics, data exploration and decision support, data creation and integration into machine learning workflows, and utilization in multi-modal data assimilation approaches. Finally, the complexity of the computational framework is abstracted away from the end user by exposing CyRSoXS to Python using Pybind. This eliminates input/output requirements for large-scale parameter exploration and inverse design, and democratizes usage by enabling seamless integration with a Python ecosystem (https://github.com/usnistgov/nrss) that can include parametric morphology generation, simulation result reduction, comparison with experiment and data fitting approaches.

3.
ACS Appl Mater Interfaces ; 14(2): 3455-3466, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34982543

RESUMO

The ability to control structure in molecular glasses has enabled them to play a key role in modern technology; in particular, they are ubiquitous in organic light-emitting diodes. While the interplay between bulk structure and optoelectronic properties has been extensively investigated, few studies have examined molecular orientation near buried interfaces despite its critical role in emergent functionality. Direct, quantitative measurements of buried molecular orientation are inherently challenging, and many methods are insensitive to orientation in amorphous soft matter or lack the necessary spatial resolution. To overcome these challenges, we use polarized resonant soft X-ray reflectivity (p-RSoXR) to measure nanometer-resolved, molecular orientation depth profiles of vapor-deposited thin films of an organic semiconductor Tris(4-carbazoyl-9-ylphenyl)amine (TCTA). Our depth profiling approach characterizes the vertical distribution of molecular orientation and reveals that molecules near the inorganic substrate and free surface have a different, nearly isotropic orientation compared to those of the anisotropic bulk. Comparison of p-RSoXR results with near-edge X-ray absorption fine structure spectroscopy and optical spectroscopies reveals that TCTA molecules away from the interfaces are predominantly planar, which may contribute to their attractive charge transport qualities. Buried interfaces are further investigated in a TCTA bilayer (each layer deposited under separate conditions resulting in different orientations) in which we find a narrow interface between orientationally distinct layers extending across ≈1 nm. Coupling this result with molecular dynamics simulations provides additional insight into the formation of interfacial structure. This study characterizes the local molecular orientation at various types of buried interfaces in vapor-deposited glasses and provides a foundation for future studies to develop critical structure-function relationships.

4.
ACS Appl Mater Interfaces ; 14(1): 1537-1545, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34935335

RESUMO

The use of polymer-polymer blends to tailor mechanical properties and improve electrical performance is becoming widespread in the field of printed electronics. Similarly, meniscus-guided coating can be used to tailor electrical properties through alignment of the semiconducting material. We report on a long-wavelength instability during blade coating of a semiconducting polymer/elastomer blend for organic transistor applications that results in significant variation of the semiconducting polymer nanofibril alignment across the instability period. By correlating measurements over diverse (nm to mm) length scales, we can directly relate the charge transport in top-gate transistors to the local polymer nanofibril alignment. Hole mobility is directly correlated to the local alignment and shows an ≈2 × variation across the instability for devices aligned with the coating direction. The potential for long-wavelength instabilities to create device-relevant morphology variations should be considered when optimizing coating conditions. These results reveal considerable potential for error in assuming that smooth films are necessarily structurally uniform; material structure may spatially vary for some coating methods, leading to a correlated, spatially varying device performance.

5.
Nat Commun ; 12(1): 4896, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385430

RESUMO

Polymer chains are attached to nanoparticle surfaces for many purposes, including altering solubility, influencing aggregation, dispersion, and even tailoring immune responses in drug delivery. The most unique structural motif of polymer-grafted nanoparticles (PGNs) is the high-density region in the corona where polymer chains are stretched under significant confinement, but orientation of these chains has never been measured because conventional nanoscale-resolved measurements lack sensitivity to polymer orientation in amorphous regions. Here, we directly measure local chain orientation in polystyrene grafted gold nanoparticles using polarized resonant soft X-ray scattering (P-RSoXS). Using a computational scattering pattern simulation approach, we measure the thickness of the anisotropic region of the corona and extent of chain orientation within it. These results demonstrate the power of P-RSoXS to discover and quantify orientational aspects of structure in amorphous soft materials and provide a framework for applying this emerging technique to more complex, chemically heterogeneous systems in the future.

6.
J Phys Chem Lett ; 12(15): 3762-3766, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33844538

RESUMO

The planar, aromatic nature of the backbone of conjugated polymers endows them with anisotropic properties. Here we show that the resonant X-ray diffraction of a sulfur-containing semicrystalline conjugated polymer at the sulfur K-edge is highly anisotropic, with strong modulation of diffracted intensity depending upon the relative orientation of the polarization of the incident beam with respect to the diffracting crystal planes. Through determination of the anisotropic resonant scattering factors, we can spectroscopically reproduce the observed resonant anisotropic scattering effects based on a proposed unit cell geometry for the polymer.

7.
J Phys Condens Matter ; 33(16)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33498032

RESUMO

We present the design and performance of a polarized resonant soft x-ray scattering (RSoXS) station for soft matter characterization built by the national institute of standards and technology at the national synchrotron light source-II (NSLS-II). The RSoXS station is located within the spectroscopy soft and tender beamline suite at NSLS-II located in Brookhaven national laboratory, New York. Numerous elements of the RSoXS station were designed for optimal performance for measurements on soft matter systems, where it is of critical importance to minimize beam damage and maximize collection efficiency of polarized x-rays. These elements include a novel optical design, sample manipulator and sample environments, as well as detector setups. Finally, we will report the performance of the measurement station, including energy resolution, higher harmonic content and suppression methods, the extent and mitigation of the carbon absorption dip on optics, and the range of polarizations available from the elliptically polarized undulator source.

8.
J Am Chem Soc ; 143(3): 1409-1415, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33395276

RESUMO

The performance of optoelectronic devices based on conjugated polymers is critically dependent upon molecular packing; however, the paracrystalline nature of these materials limits the amount of information that can be extracted from conventional X-ray diffraction. Resonant diffraction (also known as anomalous diffraction) occurs when the X-ray energy used coincides with an X-ray absorption edge in one of the constituent elements in the sample. The rapid changes in diffraction intensity that occur as the X-ray energy is varied across an absorption edge provide additional information that is lost in a conventional nonresonant experiment. Taking advantage of the fact that many conjugated polymers contain sulfur as heteroatoms, this work reveals pronounced resonant diffraction effects at the sulfur K-edge with a particular focus on the well-studied electron transporting polymer poly([N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)), P(NDI2OD-T2). The observed behavior is found to be consistent with the theory of resonant diffraction, and by simulating the energy-dependent peak intensity based on proposed crystal structures for P(NDI2OD-T2), we find that resonant diffraction can discriminate between different crystalline packing structures. The utilization of resonant diffraction opens up a new way to unlock important microstructural information about conjugated polymers for which only a handful of diffraction peaks are typically available.

9.
ACS Appl Mater Interfaces ; 12(8): 9555-9562, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-31999092

RESUMO

Two fused ladder-type nonfullerene acceptors, DTCCIC and DTCCIC-4F, based on an electron-donating alkylated dithienocyclopentacarbazole core flanked by electron-withdrawing nonfluorinated or fluorinated 1,1-dicyanomethylene-3-indanone (IC or IC-4F), are prepared and utilized in organic solar cells (OSCs). The two new molecules reveal planar structures and strong aggregation behavior, and fluorination is shown to red-shift the optical band gap and downshift energy levels. OSCs based on DTCCIC-4F exhibit a power conversion efficiency of 12.6%, much higher than that of DTCCIC-based devices (6.2%). Microstructural studies reveal that while both acceptors are highly crystalline, bulk heterojunction blends based on the nonfluorinated DTCCIC result in overly coarse domains, while blends based on the fluorinated DTCCIC-4F exhibit a more optimal nanoscale morphology. These results highlight the importance of end group fluorination in controlling molecular aggregation and miscibility.

10.
Proc Natl Acad Sci U S A ; 116(43): 21421-21426, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31527259

RESUMO

We show that glasses with aligned smectic liquid crystal-like order can be produced by physical vapor deposition of a molecule without any equilibrium liquid crystal phases. Smectic-like order in vapor-deposited films was characterized by wide-angle X-ray scattering. A surface equilibration mechanism predicts the highly smectic-like vapor-deposited structure to be a result of significant vertical anchoring at the surface of the equilibrium liquid, and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy orientation analysis confirms this prediction. Understanding of the mechanism enables informed engineering of different levels of smectic order in vapor-deposited glasses to suit various applications. The preparation of a glass with orientational and translational order from a nonliquid crystal opens up an exciting paradigm for accessing extreme anisotropy in glassy solids.

11.
Nat Commun ; 10(1): 3365, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358747

RESUMO

Recent demonstrations of inverted thermal activation of charge mobility in polymer field-effect transistors have excited the interest in transport regimes not limited by thermal barriers. However, rationalization of the limiting factors to access such regimes is still lacking. An improved understanding in this area is critical for development of new materials, establishing processing guidelines, and broadening of the range of applications. Here we show that precise processing of a diketopyrrolopyrrole-tetrafluorobenzene-based electron transporting copolymer results in single crystal-like and voltage-independent mobility with vanishing activation energy above 280 K. Key factors are uniaxial chain alignment and thermal annealing at temperatures within the melting endotherm of films. Experimental and computational evidences converge toward a picture of electrons being delocalized within crystalline domains of increased size. Residual energy barriers introduced by disordered regions are bypassed in the direction of molecular alignment by a more efficient interconnection of the ordered domains following the annealing process.

12.
Nat Commun ; 9(1): 5130, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30510263

RESUMO

Efficient injection of charge carriers from the contacts into the semiconductor layer is crucial for achieving high-performance organic devices. The potential drop necessary to accomplish this process yields a resistance associated with the contacts, namely the contact resistance. A large contact resistance can limit the operation of devices and even lead to inaccuracies in the extraction of the device parameters. Here, we demonstrate a simple and efficient strategy for reducing the contact resistance in organic thin-film transistors by more than an order of magnitude by creating high work function domains at the surface of the injecting electrodes to promote channels of enhanced injection. We find that the method is effective for both organic small molecule and polymer semiconductors, where we achieved a contact resistance as low as 200 Ωcm and device charge carrier mobilities as high as 20 cm2V-1s-1, independent of the applied gate voltage.


Assuntos
Compostos Orgânicos/química , Polímeros/química , Semicondutores , Transistores Eletrônicos , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Propriedades de Superfície
13.
Nat Commun ; 9(1): 2933, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30050114

RESUMO

Self-assembly of monolayers of functional molecules on dielectric surfaces is a promising approach for the development of molecular devices proposed in the 1970s. Substrate chemically bonded self-assembled monolayers of semiconducting conjugated molecules exhibit low mobility. And self-assembled monolayer molecular crystals are difficult to scale up and limited to growth on substrates terminated by hydroxyl groups, which makes it difficult to realize sophisticated device functions, particularly for those relying on n-type electron transport, as electrons suffer severe charge trapping on hydroxyl terminated surfaces. Here we report a gravity-assisted, two-dimensional spatial confinement method for bottom-up growth of high-quality n-type single-crystalline monolayers over large, centimeter-sized areas. We demonstrate that by this method, n-type monolayer molecular crystals with high field-effect mobility of 1.24 cm2 V-1 s-1 and band-like transport characteristics can be grown on hydroxyl-free polymer surface. Furthermore, we used these monolayer molecular crystals to realize high-performance crystalline, gate-/light-tunable lateral organic p-n diodes.

14.
ACS Appl Mater Interfaces ; 10(16): 13774-13782, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29606004

RESUMO

We report the synthesis of a new conjugated polymer composed of isoindigo (IID) and 2,3-bis[thiophenyl-2-yl]thiophene acrylonitrile (CNTVT) subunits for high-performance n-type organic field-effect transistors (OFETs). To realize high electron mobility for the IID-based conjugated polymer, an electron-withdrawing nitrile group is incorporated into the vinylene unit, thereby shifting the energy of the lowest unoccupied molecular orbital for efficient electron injection from Au electrodes without disrupting the backbone planarity. Uniaxially aligned IID24-CNTVT-conjugated polymer films for efficient intramolecular charge transport are achieved by off-center spin-coating from preaggregated solutions. To obtain its stable preaggregation in solution, a binary solvent system (a mixture of good and bad solvents) chosen with the assistance of Hansen solubility parameter simulation is used. Through this process, highly aligned IID24-CNTVT films are obtained by off-center spin coating from a solvent mixture of 9:1 dichlorobenzene/2-methoxyethanol as the good and bad solvents, respectively. The properties of the aligned IID24-CNTVT films are characterized with various analytical techniques, including UV-visible absorption spectroscopy, angle-resolved near-edge X-ray absorption fine structure spectroscopy, and grazing-incidence wide-angle X-ray scattering. Top-gate/bottom-contact OFETs with IID24-CNTVT films aligned in the direction of charge transport exhibit a high-electron field-effect mobility of 0.83 ± 0.13 cm2/V·s.

15.
Macromolecules ; 51(18)2018.
Artigo em Inglês | MEDLINE | ID: mdl-33033416

RESUMO

Bottlebrush block copolymers offer rich opportunities for the design of complex hierarchical materials. As consequences of the densely grafted molecular architecture, bottlebrush polymers can adopt highly extended backbone conformations and exhibit unique physical properties. A recent report has described the unusual phase behavior of ABC bottlebrush triblock terpolymers bearing grafted poly(D,L-lactide) (PLA), polystyrene (PS), and poly(ethylene oxide) (PEO) blocks (LSO). In this work, a combination of resonant soft X-ray reflectivity (RSoXR), near edge X-ray absorption fine structure spectroscopy (NEXAFS), and self-consistent field theory (SCFT) was used to provide insight into the phase behavior of LSO and underlying backbone chain conformations. Consistent with SCFT calculations, RSoXR measurements confirm a unique mesoscopic ACBC domain connectivity and decreasing lamellar periods (d 0) with increasing backbone length of the PEO block. RSoXR and NEXAFS demonstrate an additional unusual feature of brush LSO thin films: when the overall film thickness is ~3.25d 0, the film-air interface is majority PS (>80%). Since PS is the midblock, the triblocks must adopt looping configurations at the surface, despite the preference for the backbone to be extended. This result is supported by backbone concentrations calculated through SCFT, which suggest that looping midblocks are present throughout the film. Collectively, this work provides evidence for the flexibility of the bottlebrush backbone and the consequences of low-χ block copolymer design. We propose that PEO blocks localize at the PS/PLA domain interfaces in order to screen the highest-χ contacts in the system, driving the formation of loops. These insights introduce a potential route to overcome the intrinsic penalties to interfacial curvature imposed by the bottlebrush architecture, enabling the design of unique self-assembled materials.

16.
Adv Funct Mater ; 29(5)2018.
Artigo em Inglês | MEDLINE | ID: mdl-33061870

RESUMO

Intra- and intermolecular ordering greatly impact the electronic and optoelectronic properties of semiconducting polymers. Despite much prior efforts regarding molecular packing, the interrelationship between ordering of alkyl sidechains and conjugated backbones has not been fully detailed. We report here the discovery of a highly ordered alkyl sidechain phase in six representative semiconducting polymers, determined from distinct spectroscopic and diffraction signatures. The sidechain ordering exhibits unusually large coherence lengths of at least 70 nm, induces torsional/twisting backbone disorder, and results in a vertically layered multilayer nanostructure with ordered sidechain layers alternating with disordered backbone layers. Calorimetry and in-situ variable temperature scattering measurements in a model system PBnDT-FTAZ clearly delineate this competition of ordering that prevents the simultaneous long-range order of both moieties. The long-range sidechain ordering can be exploited as a transient state to fabricate PBnDT-FTAZ films with an atypical edge-on texture and 2.5x improved OFET mobility. The observed influence of ordering between the moieties implies that improved molecular design could produce synergistic rather than destructive ordering effects. Given the large sidechain coherence lengths observed, such synergistic ordering should greatly improve the coherence length of backbone ordering and thereby improve electronic and optoelectronic properties such as charge transport and exciton diffusion lengths.

17.
ACS Appl Mater Interfaces ; 10(1): 955-969, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29206027

RESUMO

Here, we systematically study the effect of fluorination on the performance of all-polymer solar cells by employing a naphthalene diimide (NDI)-based polymer acceptor with thiophene-flanked phenyl co-monomer. Fluorination of the phenyl co-monomer with either two or four fluorine units is used to create a series of acceptor polymers with either no fluorination (PNDITPhT), bifluorination (PNDITF2T), or tetrafluorination (PNDITF4T). In blends with the donor polymer PTB7-Th, fluorination results in an increase in power conversion efficiency from 3.1 to 4.6% despite a decrease in open-circuit voltage from 0.86 V (unfluorinated) to 0.78 V (tetrafluorinated). Countering this decrease in open-circuit voltage is an increase in short-circuit current from 7.7 to 11.7 mA/cm2 as well as an increase in fill factor from 0.45 to 0.53. The origin of the improvement in performance with fluorination is explored using a combination of morphological, photophysical, and charge-transport studies. Interestingly, fluorination is found not to affect the ultrafast charge-generation kinetics, but instead is found to improve charge-collection yield subsequent to charge generation, linked to improved electron mobility and improved phase separation. Fluorination also leads to improved light absorption, with the blue-shifted absorption profile of the fluorinated polymers complementing the absorption profile of the low-band gap PTB7-Th.

18.
J Am Chem Soc ; 139(24): 8094-8097, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28578574

RESUMO

We report that the inclusion of nonaromatic 5,5-dimethylcyclopentadiene monomer into a conjugated backbone is an attractive strategy to high performance semiconducting polymers. The use of this monomer enables a room temperature Suzuki copolymerization with a diketopyrrolopyrrole comonomer to afford a highly soluble, high molecular weight material. The resulting low band gap polymer exhibits excellent photo and thermal stability, and despite a large π-π stacking distance of 4.26 Å, it demonstrates excellent performance in thin-film transistor devices.

19.
J Am Chem Soc ; 139(25): 8552-8561, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28548496

RESUMO

We report the synthesis of two new selenophene-containing ladder-type monomers, cyclopentadiselenophene (CPDS) and indacenodiselenophene (IDSe), via a 2-fold and 4-fold Pd-catalyzed coupling with a 1,1-diborylmethane derivative. Copolymers with benzothiadiazole were prepared in high yield by Suzuki polymerization to afford materials which exhibited excellent solubility in a range of nonchlorinated solvents. The CPDS copolymer exhibited a band gap of just 1.18 eV, which is among the lowest reported for donor-acceptor polymers. Thin-film transistors were fabricated using environmentally benign, nonchlorinated solvents, with the CPDS and IDSe copolymers exhibiting hole mobility up to 0.15 and 6.4 cm2 V-1 s-1, respectively. This high performance was achieved without the undesirable peak in mobility often observed at low gate voltages due to parasitic contact resistance.

20.
Sci Adv ; 3(1): e1601935, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28138550

RESUMO

Fundamental understanding of the charge transport physics of hybrid lead halide perovskite semiconductors is important for advancing their use in high-performance optoelectronics. We use field-effect transistors (FETs) to probe the charge transport mechanism in thin films of methylammonium lead iodide (MAPbI3). We show that through optimization of thin-film microstructure and source-drain contact modifications, it is possible to significantly minimize instability and hysteresis in FET characteristics and demonstrate an electron field-effect mobility (µFET) of 0.5 cm2/Vs at room temperature. Temperature-dependent transport studies revealed a negative coefficient of mobility with three different temperature regimes. On the basis of electrical and spectroscopic studies, we attribute the three different regimes to transport limited by ion migration due to point defects associated with grain boundaries, polarization disorder of the MA+ cations, and thermal vibrations of the lead halide inorganic cages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA