Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Cent Sci ; 6(5): 739-746, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32490190

RESUMO

The cellulosome is a supramolecular multienzymatic protein complex that functions as a biological nanomachine of cellulosic biomass degradation. How the megadalton-size cellulosome adapts to a solid substrate is central to its mechanism of action and is also key for its efficient use in bioconversion applications. We report time-lapse visualization of crystalline cellulose degradation by individual cellulosomes from Clostridium thermocellum by atomic force microscopy. Upon binding to cellulose, the cellulosomes switch to elongated, even filamentous shapes and morph these dynamically at below 1 min time scale according to requirements of the substrate surface under attack. Compared with noncomplexed cellulases that peel off material while sliding along crystalline cellulose surfaces, the cellulosomes remain bound locally for minutes and remove the material lying underneath. The consequent roughening up of the surface leads to an efficient deconstruction of cellulose nanocrystals both from the ends and through fissions within. Distinct modes of cellulose nanocrystal deconstruction by nature's major cellulase systems are thus revealed.

2.
Materials (Basel) ; 11(12)2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30469499

RESUMO

Lectins are a diverse class of carbohydrate binding proteins with pivotal roles in cell communication and signaling in many (patho)physiologic processes in the human body, making them promising targets in drug development, for instance, in cancer or infectious diseases. Other applications of lectins employ their ability to recognize specific glycan epitopes in biosensors and glycan microarrays. While a lot of research has focused on lectin interaction with specific carbohydrates, the interaction potential of lectins with different types of surfaces has not been addressed extensively. Here, we screen the interaction of two specific plant lectins, Concanavalin A and Ulex Europaeus Agglutinin-I with different nanoscopic thin films. As a control, the same experiments were performed with Bovine Serum Albumin, a widely used marker for non-specific protein adsorption. In order to test the preferred type of interaction during adsorption, hydrophobic, hydrophilic and charged polymer films were explored, such as polystyrene, cellulose, N,-N,-N-trimethylchitosan chloride and gold, and characterized in terms of wettability, surface free energy, zeta potential and morphology. Atomic force microscopy images of surfaces after protein adsorption correlated very well with the observed mass of adsorbed protein. Surface plasmon resonance spectroscopy studies revealed low adsorbed amounts and slow kinetics for all of the investigated proteins for hydrophilic surfaces, making those resistant to non-specific interactions. As a consequence, they may serve as favorable supports for biosensors, since the use of blocking agents is not necessary.

3.
Nat Commun ; 8(1): 894, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-29026070

RESUMO

LPMO (lytic polysaccharide monooxygenase) represents a unique paradigm of cellulosic biomass degradation by an oxidative mechanism. Understanding the role of LPMO in deconstructing crystalline cellulose is fundamental to the enzyme's biological function and will help to specify the use of LPMO in biorefinery applications. Here we show with real-time atomic force microscopy that C1 and C4 oxidizing types of LPMO from Neurospora crassa (NcLPMO9F, NcLPMO9C) bind to nanocrystalline cellulose with high preference for the very same substrate surfaces that are also used by a processive cellulase (Trichoderma reesei CBH I) to move along during hydrolytic cellulose degradation. The bound LPMOs, however, are immobile during their adsorbed residence time ( ~ 1.0 min for NcLPMO9F) on cellulose. Treatment with LPMO resulted in fibrillation of crystalline cellulose and strongly ( ≥ 2-fold) enhanced the cellulase adsorption. It also increased enzyme turnover on the cellulose surface, thus boosting the hydrolytic conversion.Understanding the role of enzymes in biomass depolymerization is essential for the development of more efficient biorefineries. Here, the authors show by atomic force microscopy the real-time mechanism of cellulose deconstruction by lytic polysaccharide monooxygenases.


Assuntos
Celulose/metabolismo , Proteínas Fúngicas/metabolismo , Oxigenases de Função Mista/metabolismo , Oxirredução , Adsorção , Biomassa , Fenômenos Biofísicos , Celulase/metabolismo , Hidrólise , Microscopia de Força Atômica , Neurospora crassa , Polissacarídeos/metabolismo , Trichoderma
4.
Biomacromolecules ; 17(11): 3743-3749, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27737541

RESUMO

The creation of nano- and micropatterned polymer films is a crucial step for innumerous applications in science and technology. However, there are several problems associated with environmental aspects concerning the polymer synthesis itself, cross-linkers to induce the patterns as well as toxic solvents used for the preparation and even more important development of the films (e.g., chlorobenzene). In this paper, we present a facile method to produce micro- and nanopatterned biopolymer thin films using enzymes as so-called biodevelopers. Instead of synthetic polymers, naturally derived ones are employed, namely, poly-3-hydroxybutyrate and a cellulose derivative, which are dissolved in a common solvent in different ratios and subjected to spin coating. Consequently, the two biopolymers undergo microphase separation and different domain sizes are formed depending on the ratio of the biopolymers. The development step proceeds via addition of the appropriate enzyme (either PHB-depolymerase or cellulase), whereas one of the two biopolymers is selectively degraded, while the other one remains on the surface. In order to highlight the enzymatic development of the films, video AFM studies have been performed in real time to image the development process in situ as well as surface plasmon resonance spectroscopy to determine the kinetics. These studies may pave the way for the use of enzymes in patterning processes, particularly for materials intended to be used in a physiological environment.


Assuntos
Biopolímeros/química , Celulose/síntese química , Enzimas/química , Hidroxibutiratos/síntese química , Poliésteres/síntese química , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Celulase/química , Celulase/genética , Celulose/química , Enzimas/genética , Hidroxibutiratos/química , Poliésteres/química
5.
Sci Rep ; 6: 32451, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27585861

RESUMO

In many areas of science and technology, patterned films and surfaces play a key role in engineering and development of advanced materials. Here, we introduce a new generic technique for the fabrication of polysaccharide nano-structures via focused electron beam induced conversion (FEBIC). For the proof of principle, organosoluble trimethylsilyl-cellulose (TMSC) thin films have been deposited by spin coating on SiO2 / Si and exposed to a nano-sized electron beam. It turns out that in the exposed areas an electron induced desilylation reaction takes place converting soluble TMSC to rather insoluble cellulose. After removal of the unexposed TMSC areas, structured cellulose patterns remain on the surface with FWHM line widths down to 70 nm. Systematic FEBIC parameter sweeps reveal a generally electron dose dependent behavior with three working regimes: incomplete conversion, ideal doses and over exposure. Direct (FT-IR) and indirect chemical analyses (enzymatic degradation) confirmed the cellulosic character of ideally converted areas. These investigations are complemented by a theoretical model which suggests a two-step reaction process by means of TMSC → cellulose and cellulose → non-cellulose material conversion in excellent agreement with experimental data. The extracted, individual reaction rates allowed the derivation of design rules for FEBIC parameters towards highest conversion efficiencies and highest lateral resolution.


Assuntos
Celulose/química , Elétrons , Nanoestruturas/química , Nanotecnologia/métodos , Celulase/metabolismo , Simulação por Computador , Microscopia de Força Atômica , Método de Monte Carlo , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos de Trimetilsilil/química
6.
Biotechnol Biofuels ; 9(1): 178, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27570542

RESUMO

BACKGROUND: Through binding to cellulose, expansin-like proteins are thought to loosen the structural order of crystalline surface material, thus making it more accessible for degradation by hydrolytic enzymes. Swollenin SWO1 is the major expansin-like protein from the fungus Trichoderma reesei. Here, we have performed a detailed characterization of a recombinant native form of SWO1 with respect to its possible auxiliary role in the enzymatic saccharification of lignocellulosic substrates. RESULTS: The swo1 gene was overexpressed in T. reesei QM9414 Δxyr1 mutant, featuring downregulated cellulase production, and the protein was purified from culture supernatant. SWO1 was N-glycosylated and its circular dichroism spectrum suggested a folded protein. Adsorption isotherms (25 °C, pH 5.0, 1.0 mg substrate/mL) revealed SWO1 to be 120- and 20-fold more specific for binding to birchwood xylan and kraft lignin, respectively, than for binding to Avicel PH-101. The SWO1 binding capacity on lignin (25 µmol/g) exceeded 12-fold that on Avicel PH-101 (2.1 µmol/g). On xylan, not only the binding capacity (22 µmol/g) but also the affinity of SWO1 (K d = 0.08 µM) was enhanced compared to Avicel PH-101 (K d = 0.89 µM). SWO1 caused rapid release of a tiny amount of reducing sugars (<1 % of total) from different substrates (Avicel PH-101, nanocrystalline cellulose, steam-pretreated wheat straw, barley ß-glucan, cellotetraose) but did not promote continued saccharification. Atomic force microscopy revealed that amorphous cellulose films were not affected by SWO1. Also with AFM, binding of SWO1 to cellulose nanocrystallites was demonstrated at the single-molecule level, but adsorption did not affect this cellulose. SWO1 exhibited no synergy with T. reesei cellulases in the hydrolysis of the different celluloses. However, SWO1 boosted slightly (1.5-fold) the reducing sugar release from a native grass substrate. CONCLUSIONS: SWO1 is a strongly glycosylated protein, which has implications for producing it in heterologous hosts. Although SWO1 binds to crystalline cellulose, its adsorption to xylan is much stronger. SWO1 is not an auxiliary factor of the enzymatic degradation of a variety of cellulosic substrates. Effect of SWO1 on sugar release from intact plant cell walls might be exploitable with certain (e.g., mildly pretreated) lignocellulosic feedstocks.

7.
Biotechnol Biofuels ; 9: 56, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26962329

RESUMO

BACKGROUND: Enzymatic hydrolysis of cellulose involves the spatiotemporally correlated action of distinct polysaccharide chain cleaving activities confined to the surface of an insoluble substrate. Because cellulases differ in preference for attacking crystalline compared to amorphous cellulose, the spatial distribution of structural order across the cellulose surface imposes additional constraints on the dynamic interplay between the enzymes. Reconstruction of total system behavior from single-molecule activity parameters is a longstanding key goal in the field. RESULTS: We have developed a stochastic, cellular automata-based modeling approach to describe degradation of cellulosic material by a cellulase system at single-molecule resolution. Substrate morphology was modeled to represent the amorphous and crystalline phases as well as the different spatial orientations of the polysaccharide chains. The enzyme system model consisted of an internally chain-cleaving endoglucanase (EG) as well as two processively acting, reducing and non-reducing chain end-cleaving cellobiohydrolases (CBHs). Substrate preference (amorphous: EG, CBH II; crystalline: CBH I) and characteristic frequencies for chain cleavage, processive movement, and dissociation were assigned from biochemical data. Once adsorbed, enzymes were allowed to reach surface-exposed substrate sites through "random-walk" lateral diffusion or processive motion. Simulations revealed that slow dissociation of processive enzymes at obstacles obstructing further movement resulted in local jamming of the cellulases, with consequent delay in the degradation of the surface area affected. Exploiting validation against evidence from atomic force microscopy imaging as a unique opportunity opened up by the modeling approach, we show that spatiotemporal characteristics of cellulose surface degradation by the system of synergizing cellulases were reproduced quantitatively at the nanometer resolution of the experimental data. This in turn gave useful prediction of the soluble sugar release rate. CONCLUSIONS: Salient dynamic features of cellulose surface degradation by different cellulases acting in synergy were reproduced in simulations in good agreement with evidence from high-resolution visualization experiments. Due to the single-molecule resolution of the modeling approach, the utility of the presented model lies not only in predicting system behavior but also in elucidating inherently complex (e.g., stochastic) phenomena involved in enzymatic cellulose degradation. Thus, it creates synergy with experiment to advance the mechanistic understanding for improved application.

8.
ACS Appl Mater Interfaces ; 7(50): 27900-9, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26618709

RESUMO

In the field of enzymatic cellulose degradation, fundamental interactions between different enzymes and polymorphic cellulose materials are of essential importance but still not understood in full detail. One technology with the potential of direct visualization of such bioprocesses is atomic force microscopy (AFM) due to its capability of real-time in situ investigations with spatial resolutions down to the molecular scale. To exploit the full capabilities of this technology and unravel fundamental enzyme-cellulose bioprocesses, appropriate cellulose substrates are decisive. In this study, we introduce a semicrystalline-thin-film-cellulose (SCFTC) substrate which fulfills the strong demands on such ideal cellulose substrates by means of (1) tunable polymorphism via variable contents of homogeneously sized cellulose nanocrystals embedded in an amorphous cellulose matrix; (2) nanoflat surface topology for high-resolution and high-speed AFM; and (3) fast, simple, and reproducible fabrication. The study starts with a detailed description of SCTFC preparation protocols including an in-depth material characterization. In the second part, we demonstrate the suitability of SCTFC substrates for enzymatic degradation studies by combined, individual, and sequential exposure to TrCel6A/TrCel7A cellulases (Trichoderma reesei) to visualize synergistic effects down to the nanoscale.


Assuntos
Celulases/química , Celulose/química , Microscopia de Força Atômica , Celulases/metabolismo , Celulose/ultraestrutura , Hidrólise , Cinética , Especificidade por Substrato , Trichoderma/enzimologia
9.
J Biol Chem ; 289(52): 35929-38, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25361767

RESUMO

Lytic polysaccharide monooxygenase (LPMO) represents a unique principle of oxidative degradation of recalcitrant insoluble polysaccharides. Used in combination with hydrolytic enzymes, LPMO appears to constitute a significant factor of the efficiency of enzymatic biomass depolymerization. LPMO activity on different cellulose substrates has been shown from the slow release of oxidized oligosaccharides into solution, but an immediate and direct demonstration of the enzyme action on the cellulose surface is lacking. Specificity of LPMO for degrading ordered crystalline and unordered amorphous cellulose material of the substrate surface is also unknown. We show by fluorescence dye adsorption analyzed with confocal laser scanning microscopy that a LPMO (from Neurospora crassa) introduces carboxyl groups primarily in surface-exposed crystalline areas of the cellulosic substrate. Using time-resolved in situ atomic force microscopy we further demonstrate that cellulose nano-fibrils exposed on the surface are degraded into shorter and thinner insoluble fragments. Also using atomic force microscopy, we show that prior action of LPMO enables cellulases to attack otherwise highly resistant crystalline substrate areas and that it promotes an overall faster and more complete surface degradation. Overall, this study reveals key characteristics of LPMO action on the cellulose surface and suggests the effects of substrate morphology on the synergy between LPMO and hydrolytic enzymes in cellulose depolymerization.


Assuntos
Celulose/química , Proteínas Fúngicas/química , Oxigenases de Função Mista/química , Celulase , Hidrólise , Neurospora crassa/enzimologia , Oxirredução , Propriedades de Superfície
10.
FEBS J ; 281(1): 275-90, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24320702

RESUMO

Highly heterogeneous and usually weakly defined substrate morphologies complicate the study of enzymatic cellulose hydrolysis. The cellulose surface has a non-uniform shape in particular, with consequent impacts on cellulase adsorption and activity. We have therefore prepared a cellulosic model substrate which is shown by atomic force microscopy (AFM) to display a completely smooth surface, the residual squared mean roughness being 10 nm or lower, and applied it for kinetic analysis of cellulase action. The substrate consists of an amorphous cellulose matrix into which variably sized crystalline fibers are distributed in apparently irregular fashion. Its conversion into soluble sugars by Trichoderma sp. cellulase at 50 °C proceeded without apparent limitation up to 70% completion and was paralleled by a steady increase in cellulase adsorption to the cellulose. Individual cellulase components (CBH I, CBH II, EG) also showed strongly enhanced adsorption with progressing cellulose conversion, irrespective of their preference for degrading the amorphous or crystalline substrate parts as revealed by AFM. The specific activity of the adsorbed cellulases, however, decreased concomitantly. Cellulose surface morphologies evolving as a consequence of cellulase action were visualized by AFM. Three-dimensional surface degradation by the cellulases resulted in a large increase in cellulose surface area for enzyme adsorption. However, the decline in enzyme specific activity during conversion was caused by factors other than surface ablation and disruption. Based on kinetic evidence for enzymatic hydrolyses of the smooth-surface model substrate and microcrystalline cellulose (Avicel), we hypothesize that, due to gradual loss of productive dynamics in their interactions with the cellulose surface, individual cellulases get progressively confined to substrate parts where they are no longer optimally active. This eventually leads to an overall slow-down of hydrolysis.


Assuntos
Celulases/metabolismo , Celulose/metabolismo , Microscopia de Força Atômica , Complexos Multienzimáticos/química , Complexos Multienzimáticos/ultraestrutura , Trichoderma/enzimologia , Celulases/química , Hidrólise , Processamento de Imagem Assistida por Computador , Cinética , Complexos Multienzimáticos/metabolismo
11.
J Biol Chem ; 287(52): 43215-22, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23118223

RESUMO

Cellulose is the most abundant biopolymer and a major reservoir of fixed carbon on earth. Comprehension of the elusive mechanism of its enzymatic degradation represents a fundamental problem at the interface of biology, biotechnology, and materials science. The interdependence of cellulose disintegration and hydrolysis and the synergistic interplay among cellulases is yet poorly understood. Here we report evidence from in situ atomic force microscopy (AFM) that delineates degradation of a polymorphic cellulose substrate as a dynamic cycle of alternating exposure and removal of crystalline fibers. Direct observation shows that chain-end-cleaving cellobiohydrolases (CBH I, CBH II) and an internally chain-cleaving endoglucanase (EG), the major components of cellulase systems, take on distinct roles: EG and CBH II make the cellulose surface accessible for CBH I by removing amorphous-unordered substrate areas, thus exposing otherwise embedded crystalline-ordered nanofibrils of the cellulose. Subsequently, these fibrils are degraded efficiently by CBH I, thereby uncovering new amorphous areas. Without prior action of EG and CBH II, CBH I was poorly active on the cellulosic substrate. This leads to the conclusion that synergism among cellulases is morphology-dependent and governed by the cooperativity between enzymes degrading amorphous regions and those targeting primarily crystalline regions. The surface-disrupting activity of cellulases therefore strongly depends on mesoscopic structural features of the substrate: size and packing of crystalline fibers are key determinants of the overall efficiency of cellulose degradation.


Assuntos
Celulases/química , Microscopia de Força Atômica , Complexos Multienzimáticos/química , Complexos Multienzimáticos/ultraestrutura , Trichoderma/enzimologia , Trichoderma/ultraestrutura , Celulases/metabolismo , Celulose/química , Celulose/metabolismo , Complexos Multienzimáticos/metabolismo , Estrutura Quaternária de Proteína , Trichoderma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA