Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biofouling ; 38(6): 593-604, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35924694

RESUMO

The deep sea survivability and biofouling characteristics of corrosion-resistant bulk carbon nanotubes (CNTs) have been studied after deployment in the Atlantic Ocean over the course of 12 months. Quantification of barnacle count, biofouling density, and non-combustible residue shows cyanoacrylate coatings increase durability and reduce the colonization of biofouling compared to as-received CNTs. Scanning electron microscopy was performed on the biofouled CNTs, and the majority of species were identified as diatoms, consisting of an ordered silica cell wall. Both the as-received and cyanoacrylate-treated CNTs were successfully acid purified to remove biogrowth, leading to complete recovery of tensile strength and electrical transport properties. Thermogravimetric analysis, scanning electron microscopy, contact angle, dynamic mechanical analysis, and current carrying capacity measurements validated the refunctionalization results. Thus, the multifunctional property recovery and enhanced durability confirms that CNTs are electrochemically stable in saltwater environments and are resilient to biofouling conditions in real-world environments after extended exposure.


Assuntos
Incrustação Biológica , Nanotubos de Carbono , Biofilmes , Incrustação Biológica/prevenção & controle , Cianoacrilatos , Microscopia Eletrônica de Varredura , Nanotubos de Carbono/química
2.
J Magn Reson ; 319: 106811, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32920429

RESUMO

Power storage devices such as batteries are a crucial part of modern technology. The development and use of batteries has accelerated in the past decades, yet there are only a few techniques that allow gathering vital information from battery cells in a nonivasive fashion. A widely used technique to investigate batteries is electrical impedance spectroscopy (EIS), which provides information on how the impedance of a cell changes as a function of the frequency of applied alternating currents. Building on recent developments of inside-out MRI (ioMRI), a technique is presented here which produces spatially-resolved maps of the oscillating magnetic fields originating from the alternating electrical currents distributed within a cell. The technique works by using an MRI pulse sequence synchronized with a gated alternating current applied to the cell terminals. The approach is benchmarked with a current-carrying wire coil, and demonstrated with commercial and prototype lithium-ion cells. Marked changes in the fields are observed for different cell types.

3.
Nat Commun ; 9(1): 1776, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29725002

RESUMO

When and why does a rechargeable battery lose capacity or go bad? This is a question that is surprisingly difficult to answer; yet, it lies at the heart of progress in the fields of consumer electronics, electric vehicles, and electrical storage. The difficulty is related to the limited amount of information one can obtain from a cell without taking it apart and analyzing it destructively. Here, we demonstrate that the measurement of tiny induced magnetic field changes within a cell can be used to assess the level of lithium incorporation into the electrode materials, and diagnose certain cell flaws that could arise from assembly. The measurements are fast, can be performed on finished and unfinished cells, and most importantly, can be done nondestructively with cells that are compatible with commercial design requirements with conductive enclosures.

4.
J Environ Manage ; 135: 126-34, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24531384

RESUMO

While disposal bans of lithium-ion batteries are gaining in popularity, the infrastructure required to recycle these batteries has not yet fully emerged and the economic motivation for this type of recycling system has not yet been quantified comprehensively. This study combines economic modeling and fundamental material characterization methods to quantify economic trade-offs for lithium ion batteries at their end-of-life. Results show that as chemistries transition from lithium-cobalt based cathodes to less costly chemistries, battery recovery value decreases along with the initial value of the raw materials used. For example, manganese-spinel and iron phosphate cathode batteries have potential material values 73% and 79% less than cobalt cathode batteries, respectively. A majority of the potentially recoverable value resides in the base metals contained in the cathode; this increases disassembly cost and time as this is the last portion of the battery taken apart. A great deal of compositional variability exists, even within the same cathode chemistry, due to differences between manufacturers with coefficient of variation up to 37% for some base metals. Cathode changes over time will result in a heavily co-mingled waste stream, further complicating waste management and recycling processes. These results aim to inform disposal, collection, and take-back policies being proposed currently that affect waste management infrastructure as well as guide future deployment of novel recycling techniques.


Assuntos
Fontes de Energia Elétrica/economia , Meio Ambiente , Monitoramento Ambiental/economia , Lítio/química , Gerenciamento de Resíduos/economia , Cobalto/química , Eletrodos/economia , Monitoramento Ambiental/legislação & jurisprudência , Política Ambiental/economia , Política Ambiental/legislação & jurisprudência , Íons , Ferro/química , Manganês/química , Fosfatos/química , Reciclagem/métodos
5.
Nano Lett ; 13(9): 4158-63, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23902472

RESUMO

Stabilized lithium metal powder (SLMP) has been applied during battery assembly to effectively prelithiate high capacity (1500-2500 mAh/g) silicon-carbon nanotube (Si-CNT) anodes, eliminating the 20-40% first cycle irreversible capacity loss. Pressure-activation of SLMP is shown to enhance prelithiation and enable capacity matching between Si-CNT anodes and lithium nickel cobalt aluminum oxide (NCA) cathodes in full batteries with minimal added mass. The prelithiation approach enables high energy density NCA/Si-CNT batteries achieving >1000 cycles at 20% depth-of-discharge.


Assuntos
Fontes de Energia Elétrica , Nanotecnologia , Nanotubos de Carbono/química , Silício/química , Eletrodos , Íons/química , Lítio/química , Pós , Propriedades de Superfície
6.
ACS Nano ; 4(10): 6121-31, 2010 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-20857949

RESUMO

Carbon nanotubes are being considered for adoption in lithium ion batteries as both a current collector support for high-capacity active materials (replacing traditional metal foils) and as free-standing electrodes where they simultaneously store lithium ions. The necessity to establish good electrical contact to these novel electrode designs is critical for success. In this work, application of nickel and titanium as both separable and thin film electrical contacts to free-standing single-wall carbon nanotube (SWCNT) electrodes is shown to dramatically enhance both the reversible lithium ion capacity and rate capability in comparison with stainless steel. Scanning electron microscopy showed that evaporation of Ni and Ti can effectively coat the SWCNT bundles in a bulk electrode which is capable of providing an improved electrical contact. A thin film of titanium emerged as the preferred electrical contact promoting the highest capacity ever measured for a SWCNT free-standing electrode of 1250 mAh/g. In addition, the titanium contacting approach demonstrated a 5-fold improvement in lithium ion capacity at extraction rates greater than 1C for a high-energy density Ge-SWCNT electrode. The overall performance improvement with Ti contacts is attributed to a lower contact resistance, nanoscale "wetting" of SWCNT bundles to improve contact uniformity, and effective electron coupling between Ti and SWCNTs due to work function-energy level alignment. The experimental results provide the basis for a Ragone analysis (power vs energy parameters), whereby Ge-SWCNT-Ti anodes paired with a LiFePO(4) cathode can lead to a 60% improvement over conventional graphite anodes in both power and energy density for a complete battery.

7.
J Nanosci Nanotechnol ; 9(6): 3406-10, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19504861

RESUMO

The lithium ion capacity has been measured for multi-walled carbon nanotubes (MWCNTs) synthesized by injection chemical vapor deposition (CVD) using a cyclopentadienyl iron dicarbonyl dimer catalyst. The high quality of the as-synthesized MWCNTs has enabled free-standing electrodes to be fabricated independent of polymeric binder or copper support. Galvanostatic cycling of these electrodes demonstrates excellent reversibility and coulombic efficiency (> 97% after cycle 3) using propylene carbonate based electrolytes, with no evidence for material degradation. A reversible capacity exceeding 225 mAh/g was measured after 20 cycles when using the electrolyte combination of (1:1:1 v/v) ethylene carbonate (EC):propylene carbonate (PC):diethyl carbonate (DEC) at a constant current of 74 mA/g (equivalent of C/5 for LiC6). Modification of the catalyst solvent during synthesis from xylenes to pyridine improved the lithium ion capacity in the resulting MWCNT paper to 340 mAh/g. In addition, this MWCNT paper showed a stable reversible capacity after 10 cycles, exceeding 225 mAh/g when cycled at an equivalent 1C rate. Therefore, the use of a nitrogen source during synthesis can lead to improved lithium ion capacity in novel MWCNT anodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA