Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39266750

RESUMO

INTRODUCTION: Multidisciplinary tumor boards are meetings where a team of medical specialists, including medical oncologists, radiation oncologists, radiologists, surgeons, and pathologists, collaborate to determine the best treatment plan for cancer patients. While decision-making in this context is logistically and cost-intensive, it has a significant positive effect on overall cancer survival. METHODS : We evaluated the quality and accuracy of predictions by several large language models for recommending procedures by a Head and Neck Oncology tumor board, which we adapted for the task using parameter-efficient fine-tuning or in-context learning. Records were divided into two sets: n=229 used for training and n=100 records for validation of our approaches. Randomized, blinded, manual human expert classification was used to evaluate the different models. RESULTS : Treatment line congruence varied depending on the model, reaching up to 86%, with medically justifiable recommendations up to 98%. Parameter-efficient fine-tuning yielded better outcomes than in-context learning, and larger/commercial models tend to perform better. CONCLUSION: Providing precise, medically justifiable procedural recommendations for complex oncology patients is feasible. Extending the data corpus to a larger patient cohort and incorporating the latest guidelines, assuming the model can handle sufficient context length, could result in more factual and guideline-aligned responses and is anticipated to enhance model performance. We, therefore, encourage further research in this direction to improve the efficacy and reliability of large language models as support in medical decision-making processes.

3.
Vet Sci ; 11(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38922025

RESUMO

The integration of deep learning-based tools into diagnostic workflows is increasingly prevalent due to their efficiency and reproducibility in various settings. We investigated the utility of automated nuclear morphometry for assessing nuclear pleomorphism (NP), a criterion of malignancy in the current grading system in canine pulmonary carcinoma (cPC), and its prognostic implications. We developed a deep learning-based algorithm for evaluating NP (variation in size, i.e., anisokaryosis and/or shape) using a segmentation model. Its performance was evaluated on 46 cPC cases with comprehensive follow-up data regarding its accuracy in nuclear segmentation and its prognostic ability. Its assessment of NP was compared to manual morphometry and established prognostic tests (pathologists' NP estimates (n = 11), mitotic count, histological grading, and TNM-stage). The standard deviation (SD) of the nuclear area, indicative of anisokaryosis, exhibited good discriminatory ability for tumor-specific survival, with an area under the curve (AUC) of 0.80 and a hazard ratio (HR) of 3.38. The algorithm achieved values comparable to manual morphometry. In contrast, the pathologists' estimates of anisokaryosis resulted in HR values ranging from 0.86 to 34.8, with slight inter-observer reproducibility (k = 0.204). Other conventional tests had no significant prognostic value in our study cohort. Fully automated morphometry promises a time-efficient and reproducible assessment of NP with a high prognostic value. Further refinement of the algorithm, particularly to address undersegmentation, and application to a larger study population are required.

4.
Med Image Anal ; 94: 103155, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537415

RESUMO

Recognition of mitotic figures in histologic tumor specimens is highly relevant to patient outcome assessment. This task is challenging for algorithms and human experts alike, with deterioration of algorithmic performance under shifts in image representations. Considerable covariate shifts occur when assessment is performed on different tumor types, images are acquired using different digitization devices, or specimens are produced in different laboratories. This observation motivated the inception of the 2022 challenge on MItosis Domain Generalization (MIDOG 2022). The challenge provided annotated histologic tumor images from six different domains and evaluated the algorithmic approaches for mitotic figure detection provided by nine challenge participants on ten independent domains. Ground truth for mitotic figure detection was established in two ways: a three-expert majority vote and an independent, immunohistochemistry-assisted set of labels. This work represents an overview of the challenge tasks, the algorithmic strategies employed by the participants, and potential factors contributing to their success. With an F1 score of 0.764 for the top-performing team, we summarize that domain generalization across various tumor domains is possible with today's deep learning-based recognition pipelines. However, we also found that domain characteristics not present in the training set (feline as new species, spindle cell shape as new morphology and a new scanner) led to small but significant decreases in performance. When assessed against the immunohistochemistry-assisted reference standard, all methods resulted in reduced recall scores, with only minor changes in the order of participants in the ranking.


Assuntos
Laboratórios , Mitose , Humanos , Animais , Gatos , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Padrões de Referência
5.
Sci Data ; 10(1): 484, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491536

RESUMO

The prognostic value of mitotic figures in tumor tissue is well-established for many tumor types and automating this task is of high research interest. However, especially deep learning-based methods face performance deterioration in the presence of domain shifts, which may arise from different tumor types, slide preparation and digitization devices. We introduce the MIDOG++ dataset, an extension of the MIDOG 2021 and 2022 challenge datasets. We provide region of interest images from 503 histological specimens of seven different tumor types with variable morphology with in total labels for 11,937 mitotic figures: breast carcinoma, lung carcinoma, lymphosarcoma, neuroendocrine tumor, cutaneous mast cell tumor, cutaneous melanoma, and (sub)cutaneous soft tissue sarcoma. The specimens were processed in several laboratories utilizing diverse scanners. We evaluated the extent of the domain shift by using state-of-the-art approaches, observing notable differences in single-domain training. In a leave-one-domain-out setting, generalizability improved considerably. This mitotic figure dataset is the first that incorporates a wide domain shift based on different tumor types, laboratories, whole slide image scanners, and species.


Assuntos
Mitose , Neoplasias , Humanos , Algoritmos , Prognóstico , Neoplasias/patologia
6.
J Foot Ankle Res ; 16(1): 21, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061747

RESUMO

BACKGROUND: In infants and young children, a wide heterogeneity of foot shape is typical. Therefore, children, who are additionally influenced by rapid growth and maturation, are a very special cohort for foot measurements and the footwear industry. The importance of foot measurements for footwear fit, design, as well as clinical applications has been sufficiently described. New measurement techniques (3D foot scanning) allow the assessment of the individual foot shape. However, the validity in comparison to conventional methods remains unclear. Therefore, the purpose of this study was to compare 3D foot scanning with two established measurement methods (2D digital scanning/manual foot measurements). METHODS: Two hundred seventy seven children (125 m / 152 f; mean ± SD: 8.0 ± 1.5yrs; 130.2 ± 10.7cm; 28.0 ± 7.3kg) were included into the study. After collection of basic data (sex, age (yrs), body height (cm), body weight (kg)) geometry of the right foot was measured in static condition (stance) with three different measurement systems (fixed order): manual foot measurement, 2D foot scanning (2D desk scanner) and 3D foot scanning (hand-held 3D scanner). Main outcomes were foot length, foot width (projected; anatomical; instep), heel width and anatomical foot ball breadth. Analysis of variances for dependent samples was applied to test for differences between foot measurement methods (Post-hoc analysis: Tukey-Kramer-Test; α=0.05). RESULTS: Significant differences were found for all outcome measures comparing the three methods (p<0.0001). The span of foot length differences ranged from 3 to 6mm with 2D scans showing the smallest and 3D scans the largest deviations. Foot width measurements in comparison of 3D and 2D scans showed consistently higher values for 3D measurements with the differences ranging from 1mm to 3mm. CONCLUSIONS: The findings suggests that when comparing foot data, it is important to consider the differences caused by new measurement methods. Differences of about 0.6cm are relevant when measuring foot length, as this is the difference of a complete shoe size (Parisian point). Hence, correction factors may be required to compare the results of different measurements appropriately. The presented results may have relevance in the field of ergonomics (shoe industry) as well as clinical practice.


Assuntos
, Calcanhar , Humanos , Criança , Pré-Escolar , Pé/diagnóstico por imagem , Pesos e Medidas Corporais , Sapatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA