Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
ACS Chem Neurosci ; 15(10): 2028-2041, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38710594

RESUMO

Chronic cerebral hypoperfusion (CCH)-triggered blood-brain barrier (BBB) dysfunction is a core pathological change occurring in vascular dementia (VD). Despite the recent advances in the exploration of the structural basis of BBB impairment and the routes of entry of harmful compounds after a BBB leakage, the molecular mechanisms inducing BBB impairment remain largely unknown in terms of VD. Here, we employed a CCH-induced VD model and discovered increased vascular cell adhesion molecule 1 (VCAM1) expression on the brain endothelial cells (ECs). The expression of VCAM1 was directly correlated with the severity of BBB impairment. Moreover, the VCAM1 expression was associated with different regional white matter lesions. Furthermore, a compound that could block VCAM1 activation, K-7174, was also found to alleviate BBB leakage and protect the white matter integrity, whereas pharmacological manipulation of the BBB leakage did not affect the VCAM1 expression. Thus, our results demonstrated that VCAM1 is an important regulator that leads to BBB dysfunction following CCH. Blocking VCAM1-mediated BBB impairment may thus offer a new strategy to treat CCH-related neurodegenerative diseases.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Molécula 1 de Adesão de Célula Vascular , Molécula 1 de Adesão de Célula Vascular/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Animais , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Masculino , Encéfalo/metabolismo , Encéfalo/patologia , Demência Vascular/metabolismo , Demência Vascular/patologia , Humanos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Camundongos
2.
Cell Cycle ; 23(4): 478-494, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38619971

RESUMO

Hepatocellular carcinoma (HCC) stands as the third leading cause of cancer-related fatalities globally. In this study, we observed a significant increase in the expression level of the YEATS2 gene in HCC patients, and it is negatively correlated with the patients' survival rate. While we have previously identified the association between YEATS2 and the survival of pancreatic cancer cells, the regulatory mechanisms and significance in HCC are still to be fully elucidated. Our study shows that knockdown (KD) of YEATS2 expression leads to DNA damage, which in turn results in an upregulation of γ-H2A.X expression and activation of the canonical senescence-related pathway p53/p21Cip1. Moreover, our transcriptomic analysis reveals that YEATS2 KD cells can enhance the expression of p21Cip1 via the c-Myc/miR-93-5p pathway, consequently fostering the senescence of HCC cells. The initiation of cellular senescence through dual-channel activation suggests that YEATS2 plays a pivotal regulatory role in the process of cell proliferation. Ultimately, our in vivo research utilizing a nude mouse tumor model revealed a notable decrease in both tumor volume and weight after the suppression of YEATS2 expression. This phenomenon is likely attributable to the attenuation of proliferative cell activity, coupled with a concurrent augmentation in the population of natural killer (NK) cells. In summary, our research results have supplemented the understanding of the regulatory mechanisms of HCC cell proliferation and indicated that targeting YEATS2 may potentially inhibit liver tumor growth.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Senescência Celular , Inibidor de Quinase Dependente de Ciclina p21 , Neoplasias Hepáticas , Camundongos Nus , Senescência Celular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Animais , Proliferação de Células/genética , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação Neoplásica da Expressão Gênica , Camundongos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Dano ao DNA/genética , Transdução de Sinais , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Camundongos Endogâmicos BALB C , Masculino
3.
Protein Cell ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38482631

RESUMO

Epigenetic clocks are accurate predictors of human chronological age based on the analysis of DNA methylation at specific CpG sites. However, available DNA methylation (DNAm) age predictors are based on datasets with limited ethnic representation. Moreover, a systematic comparison between DNAm data and other omics datasets has not yet been performed. To address these knowledge gaps, we generated and analyzed DNA methylation datasets from two independent Chinese cohorts, revealing age-related DNAm changes. Additionally, a DNA methylation (DNAm) aging clock (iCAS-DNAmAge) and a group of DNAm-based multi-modal clocks for Chinese individuals were developed, with most of them demonstrating strong predictive capabilities for chronological age. The clocks were further employed to predict factors influencing aging rates. The DNAm aging clock, derived from multi-modal aging features (compositeAge-DNAmAge), exhibited a close association with multi-omics changes, lifestyles, and disease status, underscoring its robust potential for precise biological age assessment. Our findings offer novel insights into the regulatory mechanism of age-related DNAm changes and extend the application of the DNAm clock for measuring biological age and aging pace, providing basis for evaluating aging intervention strategies.

4.
Respir Res ; 25(1): 67, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317146

RESUMO

Chronic obstructive pulmonary disease (COPD) is a leading aging related cause of global mortality. Small airway narrowing is recognized as an early and significant factor for COPD development. Senescent fibroblasts were observed to accumulate in lung of COPD patients and promote COPD progression through aberrant extracellular matrix (ECM) deposition and senescence-associated secretory phenotype (SASP). On the basis of our previous study, we further investigated the the causes for the increased levels of miR-377-3p in the blood of COPD patients, as well as its regulatory function in the pathological progression of COPD. We found that the majority of up-regulated miR-377-3p was localized in lung fibroblasts. Inhibition of miR-377-3p improved chronic smoking-induced COPD in mice. Mechanistically, miR-377-3p promoted senescence of lung fibroblasts, while knockdown of miR-377-3p attenuated bleomycin-induced senescence in lung fibroblasts. We also identified ZFP36L1 as a direct target for miR-377-3p that likely mediated its pro senescence activity in lung fibroblasts. Our data reveal that miR-377-3p is crucial for COPD pathogenesis, and may serve as a potential target for COPD therapy.


Assuntos
Fator 1 de Resposta a Butirato , MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Camundongos , Envelhecimento , Fator 1 de Resposta a Butirato/metabolismo , Senescência Celular/genética , Fibroblastos/metabolismo , Pulmão/metabolismo , MicroRNAs/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo
5.
PeerJ ; 12: e16874, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406287

RESUMO

Low-grade glioma (LGG), a common primary tumor, mainly originates from astrocytes and oligodendrocytes. Increasing evidence has shown that peroxisomes function in the regulation of tumorigenesis and development of cancer. However, the prognostic value of peroxisome-related genes (PRGs) in LGG has not been reported. Therefore, it is necessary to construct a prognostic risk model for LGG patients based on the expression profiles of peroxisome-related genes. Our study mainly concentrated on developing a peroxisome-related gene signature for overall survival (OS) prediction in LGG patients. First, according to these peroxisome-related genes, all LGG patients from The Cancer Genome Atlas (TCGA) database could be divided into two subtypes. Univariate Cox regression analysis was used to find prognostic peroxisome-related genes in TCGA_LGG dataset, and least absolute shrinkage and selection operator Cox regression analysis was employed to establish a 14-gene signature. The risk score based on the signature was positively associated with unfavorable prognosis. Then, multivariate Cox regression incorporating additional clinical characteristics showed that the 14-gene signature was an independent predictor of LGG. Time-dependent ROC curves revealed good performance of this prognostic signature in LGG patients. The performance about predicting OS of LGG was validated using the GSE107850 dataset derived from the Gene Expression Omnibus (GEO) database. Furethermore, we constructed a nomogram model based on the gene signature and age, which showed a better prognostic power. Gene ontology (GO) and Kyoto Encylopedia of Genes and Genomes (KEGG) analyses showed that neuroactive ligand-receptor interaction and phagosome were enriched and that the immune status was decreased in the high-risk group. Finally, cell counting kit-8 (CCK8) were used to detect cell proliferation of U251 and A172 cells. Inhibition of ATAD1 (ATPase family AAA domain-containing 1) and ACBD5 (Acyl-CoA binding-domain-containing-5) expression led to significant inhibition of U251 and A172 cell proliferation. Flow cytometry detection showed that ATAD1 and ACBD5 could induce apoptosis of U251 and A172 cells. Therefore, through bioinformatics methods and cell experiments, our study developed a new peroxisome-related gene signature that migh t help improve personalized OS prediction in LGG patients.


Assuntos
Glioma , Peroxissomos , Humanos , Peroxissomos/genética , Glioma/genética , Domínio AAA , Adenosina Trifosfatases , Apoptose , Microambiente Tumoral/genética
6.
ACS Mater Au ; 4(1): 45-54, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38221919

RESUMO

Lithium aluminum layered double hydroxide chlorides (LADH-Cl) have been widely used for lithium extraction from brine. Elevation of the performances of LADH-Cl sorbents urgently requires knowledge of the composition-structure-property relationship of LADH-Cl in lithium extraction applications, but these are still unclear. Herein, combining the phase equilibrium experiments, advanced solid characterization methods, and theoretical calculations, we constructed a cyclic work diagram of LADH-Cl for lithium capture from aqueous solution, where the reversible (de)hydration and (de)intercalation induced phase evolution of LADH-Cl dominates the apparent lithium "adsorption-desorption" behavior. It is found that the real active ingredient in LADH-Cl type lithium sorbents is a dihydrated LADH-Cl with an Al:Li molar ratio varying from 2 to 3. This reversible process indicates an ultimate reversible lithium (de)intercalation capacity of ∼10 mg of Li per g of LADH-Cl. Excessive lithium deintercalation results in the phase structure collapse of dihydrated LADH-Cl to form gibbsite. When interacting with a concentrated LiCl aqueous solution, gibbsite is easily converted into lithium saturated intercalated LADH-Cl phases. By further hydration with a diluted LiCl aqueous solution, this phase again converts to the active dihydrated LADH-Cl. In the whole cyclic progress, lithium ions thermodynamically favor staying in the Al-OH octahedral cavities, but the (de)intercalation of lithium has kinetic factors deriving from the variation of the Al-OH hydroxyl orientation. The present results provide fundamental knowledge for the rational design and application of LADH-Cl type lithium sorbents.

7.
Biomed Pharmacother ; 170: 115778, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141279

RESUMO

Blood-brain barrier (BBB) dysfunction plays a pivotal role in the pathology of chronic cerebral hypoperfusion (CCH)-related neurodegenerative diseases. Continuous endothelial cells (EC) that line the blood vessels of the brain are important components of the BBB to strictly control the flow of substances and maintain the homeostatic environment of the brain. However, the molecular mechanisms from the perspective of EC-induced BBB dysfunction after CCH are largely unknown. In this study, the BBB function was assessed using immunostaining and transmission electron microscopy. The EC dysfunction profile was screened by using EC enrichment followed by RNA sequencing. After identified the key EC dysfunction factor, C-kit, we used the C-kit inhibition drug (imatinib) and C-kit down-regulation method (AAV-BR1-C-kit shRNA) to verify the role of C-kit on BBB integrity and EC transcytosis after CCH. Furthermore, we also activated C-kit with stem cell factor (SCF) to observe the effects of C-kit on BBB following CCH. We explored that macromolecular proteins entered the brain mainly through EC transcytosis after CCH and caused neuronal loss. Additionally, we identified receptor tyrosine kinase C-kit as a key EC dysfunction molecule. Furthermore, the pharmacological inhibition of C-kit with imatinib counteracted BBB leakage by reducing caveolae-mediated transcytosis. Moreover, treatment with AAV-BR1-C-kit shRNA, which targets brain EC to inhibit C-kit expression, also ameliorated BBB leakage by reducing caveolae-mediated transcytosis. Furthermore, the SCF increased the permeability of the BBB by actively increasing caveolae-mediated transcytosis. This study provides evidence that C-kit is a key BBB permeability regulator through caveolae-mediated transcytosis in EC after CCH.


Assuntos
Barreira Hematoencefálica , Isquemia Encefálica , Humanos , Barreira Hematoencefálica/metabolismo , Cavéolas/metabolismo , Células Endoteliais , Mesilato de Imatinib/farmacologia , Transcitose , Isquemia Encefálica/metabolismo , RNA Interferente Pequeno/metabolismo , Permeabilidade
8.
DNA Cell Biol ; 43(2): 61-73, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38153369

RESUMO

Vitiligo is one of the common chronic autoimmune skin diseases in clinic, which is characterized by localized or generalized depigmentation and seriously affects the physical and mental health of patients. At present, the pathogenesis of vitiligo is not clear; mainly, heredity, autoimmunity, oxidative stress, melanocyte (MC) self-destruction, and the destruction, death, or dysfunction of MCs caused by various reasons are always the core of vitiligo. Regulatory cell death (RCD) is an active and orderly death mode of cells regulated by genes, which widely exists in various life activities, plays a pivotal role in maintaining the homeostasis of the organism, and is closely related to the occurrence and development of many diseases. With the deepening of the research and understanding of RCD, people gradually found that there are many different forms of RCD in the lesions and perilesional skin of vitiligo patients, such as apoptosis, autophagy, pyroptosis, ferroptosis, and so on. Different cell death modes have different mechanisms in vitiligo, and different RCDs can interact and regulate each other. In this article, the mechanism related to RCD in the pathogenesis of vitiligo is reviewed, which provides new ideas for exploring the pathogenesis and targeted treatment of vitiligo.


Assuntos
Vitiligo , Humanos , Vitiligo/genética , Vitiligo/patologia , Melanócitos , Pele , Autoimunidade , Apoptose
9.
Mol Neurobiol ; 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38159198

RESUMO

Alzheimer's disease (AD) is an age-related progressive neurodegenerative disease, and approximately 10% of AD cases are early-onset familial AD (EOFAD), which is mainly linked to point mutations in genes encoding presenilins (PS1 and PS2). Mutations in PS2 are extremely rare and have not received enough attention. Recently, studies have found that Rho GTPase activity is closely related to the pathogenesis of AD. In this study, we used transcriptome sequencing in PS2 siRNA-transfected SH-SY5Y cells and found a group of differentially expressed genes (DEGs) related to the regulation of GTPase activity. Among those DEGs, the most significantly downregulated was Rho guanine nucleotide exchange factor 5 (ARHGEF5). GTPase activity in PS2 siRNA-transfected cells was significantly decreased. Then, we found that the expression of ARHGEF5 and the GTPase activity of Mitochondrial Rho GTPase 2 (Miro2) in PS2 D439A mutant SH-SY5Y cells were significantly decreased. We found for the first time that PS2 can bind to Miro2, and the PS2 D439A mutation reduced the binding between PS2 and Miro2, reduced the expression of Miro2, and resulted in an imbalance in mitochondrial fusion/fission dynamics. In conclusion, PS2 gene knockdown may participate in the pathogenesis of AD through the regulation of GTPase activity. The imbalance in mitochondrial dynamics mediated by the PS2 D439A mutation through regulation of the expression and GTPase activity of Miro2 may be a potential pathogenic mechanism of AD.

10.
Biomed Pharmacother ; 167: 115622, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783155

RESUMO

The tumor microenvironment (TME), the "soil" on which tumor cells grow, has an important role in regulating the proliferation and metastasis of tumor cells as well as their response to treatment. Cancer-associated fibroblasts (CAFs), as the most abundant stromal cells of the TME, can not only directly alter the immunosuppressive effect of the TME through their own metabolism, but also influence the aggregation and function of immune cells by secreting a large number of cytokines and chemokines, reducing the body's immune surveillance of tumor cells and making them more prone to immune escape. Our study provides a comprehensive review of fibroblast chemotaxis, malignant transformation, metabolic characteristics, and interactions with immune cells. In addition, the current small molecule drugs targeting CAFs have been summarized, including both natural small molecules and targeted drugs for current clinical therapeutic applications. A complete review of the role of fibroblasts in TME from an immune perspective is presented, which has important implications in improving the efficiency of immunotherapy by targeting fibroblasts.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Fibroblastos , Quimiotaxia , Transporte Biológico , Microambiente Tumoral
11.
PLoS One ; 18(10): e0292001, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37792906

RESUMO

The long-term and stable development of agriculture is the key to China's economic development and social stability. Agricultural total factor productivity and the digital economy have become new kinetic energy and new engines driving agricultural high-quality development. It is of great significance to verify whether there are significant spatial and threshold effects in the process of high-quality development of agriculture and to explore the intrinsic relationship between high-quality development of agriculture and agricultural total factor productivity and digital economy. This paper takes 31 provinces in China from 2011 to 2020 as the research object. The coefficient of variation method is used to estimate the comprehensive evaluation index of agricultural high-quality development and digital economy. And Dea-Malmquist index method is used to estimate agricultural total factor productivity. On this basis, the spatial Durbin model and threshold regression model are constructed to explore the spatial and threshold effects of agricultural total factor productivity, digital economy and other factors and high-quality agricultural development. The conclusion is as follows: the high-quality development of agriculture has significant spatial autocorrelation. Agricultural total factor productivity and digital economy have significant direct effect and indirect spillover effect on the high-quality development of agriculture. Agricultural total factor productivity has stage differences in each range of digital economy level, but its influence on agricultural high-quality development shows a positive state. Based on this, the paper puts forward some countermeasures to promote the high-quality development of agriculture.


Assuntos
Agricultura , Desenvolvimento Econômico , China , Correlação de Dados , Análise Espacial , Eficiência
12.
Sci Total Environ ; 905: 167125, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37722427

RESUMO

The toxic effects of organic pollutants and nanoplastics on fish have been extensively studied, but there is limited research available on their combined toxicity to bivalves. This research aimed to investigate the accumulation and ecotoxicological impacts such as antioxidant capacity, histopathology and intestinal microbiota in white hard clam Meretrix lyrata, resulting from 7 days of single and mixture exposure to 3,3',4,4'-tetrachlorobiphenyl (PCB77, 0.1 mg/L) and polystyrene nanoplastics (PS-NPs, 80 nm, 1 mg/L). Our findings revealed that PS-NPs accumulated in various tissues such as the intestine, gill, mantle, foot, and siphon. And when compared to the PCB-PSNPs (PP) co-exposure group, the intestinal fluorescence intensity mediated by plastic particles in the PS-NPs (PS group) was significantly higher. The gill, digestive gland, and intestine were all damaged to varying extent by single exposure to PS-NPs or PCB77, according to histopathological analysis, which was aggravated by PP group. Moreover, the co-exposure induced a higher level of oxidative stress, which reflected by increase of activities of superoxide dismutase, catalase, glutamate oxaloacetate transaminase and glutamic-pyruvic transaminase and malondialdehyde content. In addition, the intestine microbial composition was dramatically altered by the combined exposure, reducing the abundance of probiotics such as Firmicutes, thereby posing a great threat to the health and metabolism of M. lyrata. In conclusion, our findings showed that PS-NPs and PCB77 co-exposure induced a higher toxicity to M. lyrata, including histopathological changes, altered antioxidant capacity and intestinal microbiota disruption. This study provides novel insights into PCB77 and PS-NPs' combined toxicity to marine organisms and its underlying molecular mechanisms of ecotoxicological effects.


Assuntos
Bivalves , Microbioma Gastrointestinal , Nanopartículas , Poluentes Químicos da Água , Animais , Antioxidantes/farmacologia , Poliestirenos/toxicidade , Microplásticos/toxicidade , Estresse Oxidativo , Poluentes Químicos da Água/toxicidade , Nanopartículas/toxicidade
13.
Nat Commun ; 14(1): 5563, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689696

RESUMO

The introduction of metal sites into molecular metal oxides, so-called polyoxometalates, is key for tuning their structure and reactivity. The complex mechanisms which govern metal-functionalization of polyoxometalates are still poorly understood. Here, we report a coupled set of light-dependent and light-independent reaction equilibria controlling the mono- and di-metal-functionalization of a prototype molecular vanadium oxide cluster. Comprehensive mechanistic analyses show that coordination of a Mg2+ ion to the species {(NMe2H2)2[VV12O32Cl]}3- results in formation of the mono-functionalized {(NMe2H2)[(MgCl)VV12O32Cl]}3- with simultaneous release of a NMe2H2+ placeholder cation. Irradiation of this species with visible light results in one-electron reduction of the vanadate, exchange of the second NMe2H2+ with Mg2+, and formation/crystallization of the di-metal-functionalized [(MgCl)2VIVVV11O32Cl]4-. Mechanistic studies show how stimuli such as light or competing cations affect the coupled equilibria. Transfer of this synthetic concept to other metal cations is also demonstrated, highlighting the versatility of the approach.

14.
Front Nutr ; 10: 1216572, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37528998

RESUMO

Introduction: Potentilla anserina (Potentilla anserina L.), also known as ginseng fruit, is a plant that can be used as both medicine and food. Potentilla anserina L. has high medical value in Chinese medicine, such as strengthening the spleen and stomach, replenishing qi and blood, and astringing hemostasis. Methods: In this study, polysaccharides of Potentilla anserina L. were extracted from the root using an enzyme-assisted extraction method. According to the principle of Box-Behnken design, response surface methodology was designed to optimize the extraction conditions. Fourier transform infrared spectroscopy and scanning electron microscopy were used to investigate the structure and appearance of Potentilla anserina L. polysaccharides. The monosaccharide composition of Potentilla anserina L. polysaccharides was determined using high-performance liquid chromatography. The antioxidant activities were also studied. Results: Under the optimal extraction conditions (the ratio of solid to liquid, 1:15; ratio of cellulase to pectinase, 1:2; extraction pH, 8.0; enzyme reaction temperature, 60°C), the extraction yield of Potentilla anserina L. polysaccharides was 19.80 ± 0.01%, equal to the model prediction value 19.84%. The data of Fourier transform infrared spectrum, scanning electron microscopy, and high-performance liquid chromatography showed that the Potentilla anserina L. polysaccharide was a kind of α-pyran polysaccharide, mainly consisting of galactose, glucose, rhamnose, and arabinose. The antioxidant results showed that Potentilla anserina L. polysaccharides had a strong hydroxyl radical scavenging ability (IC50 = 0.367 mg/mL), superoxide anion scavenging ability (IC50 = 45.017 mg/mL), and a certain degree of total reducing ability. Discussion: Enzyme-assisted extraction is an efficient method to extract Potentilla anserina L. polysaccharides. The Potentilla anserina L. polysaccharides could have potential use in functional foods as a natural antioxidant.

15.
PeerJ ; 11: e15757, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601264

RESUMO

The objective of this study was to investigate the cellulose degradation rate (CDR) and lignin degradation rate (LDR) of Codonopsis pilosula straw (CPS) and the optimal fermentation parameters for mixed fungal fermentation. Single-factor tests were used to study the effects of the fungal ratio (Trichoderma reesei: Coprinus comatus), fungal inoculum, corn flour content, and fermentation time on the degradation rate of cellulose and lignin. Based on the results of this experiment, the optimal fermentation factors were identified, and the effects of various factors and their interactions on the degradation rates of cellulose and lignin were further evaluated using the response surface method. The quadratic polynomial mathematical model of degradation rates of the cellulose and lignin in CPS by mixed fungus fermentation was established using Design Expert software v8.0.6. Under the optimal parameters for fungal fermentation of CPS straw (fungal ratio 4:6, fungal inoculum 8%, corn flour content 10%, fermentation time of 15 d), the CDR and LDR reached 13.65% and 10.73%, respectively. Collectively, the mixed fungal fermentation of CPS resulted in decreased lignin and cellulose content, better retention of nutrients, and enhanced fermentation quality. The results of this study indicate that fermentation using Trichoderma reesei and Coprinus comatus is a productive method for straw degradation, providing a theoretical basis for the development of CPS as feed.


Assuntos
Codonopsis , Lignina , Fermentação , Celulose , Amido
16.
Sci Total Environ ; 901: 166482, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37619732

RESUMO

As nanoplastics and persistent organic pollutants are broadly distributed in aquatic ecosystems and pose a potential threat to ecosystem, most pertinent studies have focused on aquatic animals, while studies on freshwater plants have been rarely reported. Therefore, we analyzed the single and combined toxicological impacts of various concentrations of 80 nm polystyrene nanoplastics (PS-NPs) including 0.5, 5, 10, and 20 mg/L and polychlorinated biphenyl-52 (PCB-52, 2,2',5,5'- tetrachlorobiphenyl) at 0.1 mg/L on the aquatic plant Spirodela polyrhiza (S. polyrhiza) after a 10-day hydroponic experiment. Laser confocal scanning microscopy (LCSM) showed the accumulation of PS-NPs mainly in the root surface and the lower epidermis of leaves, and the enrichment of PS-NPs was aggravated by the presence of PCB-52. PS-NPs at 10 mg/L and 20 mg/L alone or in combination with PCB-52 notably inhibited the growth of S. polyrhiza, reduced the synthesis of chlorophylls a and b, and increased the activities of superoxide dismutase (SOD) and peroxidase (POD) as well as malondialdehyde (MDA) levels, and induced osmotic imbalance (soluble protein and soluble sugar contents) (p < 0.05). However, a single treatment with low levels of PS-NPs had positive effects on the growth (0.5 mg/L) and photosynthetic systems (0.5, 5 mg/L) of S. polyrhiza, while co-exposure exacerbated the damaging impacts of PS-NPs on the antioxidant defense system of S. polyrhiza, which was more pronounced in the roots. Furthermore, correlation analysis revealed that plant growth parameters were positively correlated with chlorophyll a and b content and negatively correlated with soluble sugars, antioxidant enzymes, lipid peroxidation, and carotenoid content (p < 0.05). These results provide data to improve the understanding of the single and combined ecotoxicological effects of nanoplastics and polychlorinated biphenyls (PCBs) in aquatic plants and their application in phytoremediation measures.

17.
J Hazard Mater ; 459: 132294, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37591169

RESUMO

Nanoplastics and di(2-ethylhexyl) phthalate (DEHP) are ubiquitous emerging contaminants that are transferred among organisms through food chain in the ecosystem. This study evaluated the trophic transfer of polystyrene nanoplastics (PSNPs) and DEHP in a food chain including Chlorella pyrenoidosa, Daphnia magna and Micropterus salmoides (algae-crustacean-fish) and lipid metabolism at a higher trophic level in fish. Our results showed that the PSNPs and DEHP accumulated in C. pyrenoidosa or D. magna were transferred to the M. salmoides, of which the DEHP were not biomagnified, while the PSNPs were trophically amplified by the food chain. It is suggested that more PSNPs might be accumulated by higher level consumers in a longer food chain. Additionally, the trophic transfer of PSNPs and DEHP resulted in antioxidant response and histopathological damage in M. salmoides. Moreover, the lipid biochemical parameters and lipid metabolism related genes (fasn, hsl, cpt1a, atgl, apob, fabp1, lpl, cetp) of M. salmoides were significantly affected, which indicated disturbance of lipid metabolism. This study offers great insight into the transfer of contaminants by trophic transfer and their negative effects on organisms at higher trophic levels, which cause human exposure to MNPs and organic contaminants in the ecosystem.


Assuntos
Bass , Chlorella , Dietilexilftalato , Animais , Humanos , Cadeia Alimentar , Daphnia , Microplásticos , Ecossistema , Dietilexilftalato/toxicidade , Metabolismo dos Lipídeos , Água Doce
18.
Front Oncol ; 13: 1203775, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645431

RESUMO

Background: TAF1B (TATA Box Binding Protein (TBP)-Associated Factor) is an RNA polymerase regulating rDNA activity, stress response, and cell cycle. However, the function of TAF1B in the progression of hepatocellular carcinoma (HCC) is unknown. Objective: In this study, we intended to characterize the crucial role and molecular mechanisms of TAF1B in modulating nucleolar stress in HCC. Methods: We analyzed the differential expression and prognostic value of TAF1B in hepatocellular carcinoma based on The Cancer Genome Atlas (TCGA) database, tumor and paraneoplastic tissue samples from clinical hepatocellular carcinoma patients, and typical hepatocellular carcinoma. We detected cell proliferation and apoptosis by lentiviral knockdown of TAF1B expression levels in HepG2 and SMMC-7721 cells using clone formation, apoptosis, and Western blotting (WB) detection of apoptosis marker proteins. Simultaneously, we investigated the influence of TAF1B knockdown on the function of the pre-initiation complex (PIC) by WB, and co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP) assays verified the interaction between the complexes and the effect on rDNA activity. Immunofluorescence assays measured the expression of marker proteins of nucleolus stress, fluorescence in situ hybridization (FISH) assays checked the rDNA activity, and qRT-PCR assays tested the pre-rRNA levels. Regarding molecular mechanisms, we investigated the role of p53 and miR-101 in modulating nucleolar stress and apoptosis. Finally, the impact of TAF1B knockdown on tumor growth, apoptosis, and p53 expression was observed in xenograft tumors. Result: We identified that TAF1B was highly expressed in hepatocellular carcinoma and associated with poor prognosis in HCC patients. TAF1B depletion modulated nucleolar stress and apoptosis in hepatocellular carcinoma cells through positive and negative feedback from p53-miR-101. RNA polymerase I transcription repression triggered post-transcriptional activation of miR-101 in a p53-dependent manner. In turn, miR-101 negatively feeds back through direct inhibition of the p53-mediated PARP pathway. Conclusion: These findings broaden our comprehension of the function of TAF1B-mediated nucleolar stress in hepatocellular carcinoma and may offer new biomarkers for exploring prospective therapeutic targets in HCC.

19.
Sci Total Environ ; 891: 164319, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37236480

RESUMO

The widespread consumption of nanoplastics (NPs) and bisphenol A (BPA) affected the aquatic ecosystem and imposed risks to the safety of aquatic organisms. This study was aimed at assessing the ecotoxicological effects of single and combined exposure to BPA and polystyrene nanoplastics (PSNPs) on the channel catfish (Ictalurus punctatus). A total of 120 channel catfish were separated into four groups with triplicate (each contains 10 fish) and exposed to chlorinated tap water (control group), PSNP single exposure (0.3 mg/L), BPA single exposure (500 µg/L) and PSNPs (0.3 mg/L) + BPA (500 µg/L) co-exposure for 7 days. Our results showed a relatively higher intestinal accumulation of PSNPs in co-exposure group, compared to PSNP single exposure group. Histopathological analysis showed that single exposure to PSNPs and BPA caused breakage of intestinal villi and swelling of hepatocytes in channel catfish, while the co-exposure exacerbated the histopathological damage. In addition, co-exposure significantly increased SOD, CAT activities and MDA contents in the intestine and liver, inducing oxidative stress. In terms of immune function, the activities of ACP and AKP were significantly decreased. The expressions of immune-related genes such as IL-1ß, TLR3, TLR5, hepcidin and ß-defensin were significantly up-regulated, and the expression of IL-10 was down-regulated. Additionally, the co-exposure significantly altered the composition of the intestinal microbiota, leading to an increase in the Shannon index and a decrease in the Simpson index. In summary, this study revealed that mixture exposure to PSNPs and BPA exacerbated toxic effects on histopathology, oxidative stress, immune function and intestinal microbiota in channel catfish. It emphasized the threat of NPs and BPA to the health of aquatic organisms and human food safety, with a call for effective ways to regulate the consumption of these anthropogenic chemicals.


Assuntos
Microbioma Gastrointestinal , Ictaluridae , Animais , Humanos , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Ictaluridae/metabolismo , Microplásticos/toxicidade , Microplásticos/metabolismo , Ecossistema , Intestinos
20.
Front Nutr ; 10: 1149137, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025610

RESUMO

Introduction: Arctium lappa L. root has high nutritional and medicinal values and has been identified as a healthy food raw material by the Ministry of Health of the People's Republic of China. Methods: In the present study, an aqueous two-phase system (ATPS) of polyethylene glycol (PEG)-(NH4)2SO4 was used to extract Arctium lappa L. polysaccharides (ALPs) from the Arctium lappa L. roots, the optimal extraction conditions of crude ALPs were optimized by using the single-factor experiment and response surface methodology. The structure and composition of ALPs were determined by fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and high-performance liquid chromatography (HPLC). At the same time, the antioxidant activity of ALPs was investigated by in vitro antioxidant experiment. Results: The optimized extraction parameters for extraction ALPs were as follows: the PEG relative molecular weight of 6,000, a quality fraction of PEG 25%, a quality fraction of (NH4)2SO4 18%, and an extraction temperature of 80°C. Under these conditions, the extraction rate of ALPs could reach 28.83%. FTIR, SEM and HPLC results showed that ALPs were typical acidic heteropolysaccharides and had uneven particle size distribution, an irregular shape, and a rough surface. The ALPs were chiefly composed of glucose, rhamnose, arabinose, and galactose with a molar ratio of 70.19:10.95:11.16:6.90. In addition, the ALPs had intense antioxidant activity in vitro with IC50 values in the ·OH radical (1.732 mg/ml), DPPH radical (0.29 mg/ml), and superoxide anion (0.15 mg/ml) scavenging abilities. Discussion: The results showed that ATPS was an efficient method to extract polysaccharides and could be used for the extraction of other polysaccharides. These results indicated that ALPs had great prospects as a functional food and could be exploited in multiple fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA