Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Psychiatry ; 14: 1139992, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304433

RESUMO

Introduction: Females in the perimenopausal period are susceptible to mood disorders. Perimenopausal panic disorder (PPD) is characterized by repeated and unpredictable panic attacks during perimenopause, and it impacts the patient's physical and mental health and social function. Pharmacotherapy is limited in the clinic, and its pathological mechanism is unclear. Recent studies have demonstrated that gut microbiota is strongly linked to emotion; however, the relation between PPD and microbiota is limitedly known. Methods: This study aimed to discover specific microbiota in PPD patients and the intrinsic connection between them. Gut microbiota was analyzed in PPD patients (n = 40) and healthy controls (n = 40) by 16S rRNA sequencing. Results: The results showed reduced α-diversity (richness) in the gut microbiota of PPD patients. ß-diversity indicated that PPD and healthy controls had different intestinal microbiota compositions. At the genus level, 30 species of microbiota abundance had significantly different between the PPD and healthy controls. In addition, HAMA, PDSS, and PASS scales were collected in two groups. It was found that Bacteroides and Alistipes were positively correlated with PASS, PDSS, and HAMA. Discussion: Bacteroides and Alistipes dysbiosis dominate imbalanced microbiota in PPD patients. This microbial alteration may be a potential pathogenesis and physio-pathological feature of PPD. The distinct gut microbiota can be a potential diagnostic marker and a new therapeutic target for PPD.

2.
Front Microbiol ; 14: 1211004, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323905

RESUMO

Cyanobacteria are an excellent microbial photosynthetic platform for sustainable carbon dioxide fixation. One bottleneck to limit its application is that the natural carbon flow pathway almost transfers CO2 to glycogen/biomass other than designed biofuels such as ethanol. Here, we used engineered Synechocystis sp. PCC 6803 to explore CO2-to-ethanol potential under atmospheric environment. First, we investigated the effects of two heterologous genes (pyruvate decarboxylase and alcohol dehydrogenase) on ethanol biosynthesis and optimized their promoter. Furthermore, the main carbon flow of the ethanol pathway was strengthened by blocking glycogen storage and pyruvate-to-phosphoenolpyruvate backflow. To recycle carbon atoms that escaped from the tricarboxylic acid cycle, malate was artificially guided back into pyruvate, which also created NADPH balance and promoted acetaldehyde conversion into ethanol. Impressively, we achieved high-rate ethanol production (248 mg/L/day at early 4 days) by fixing atmospheric CO2. Thus, this study exhibits the proof-of-concept that rewiring carbon flow strategies could provide an efficient cyanobacterial platform for sustainable biofuel production from atmospheric CO2.

3.
Appl Biochem Biotechnol ; 195(6): 3855-3871, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36251112

RESUMO

Lignocellulose in maize straw includes cellulose, hemicellulose, and lignin, and the degradation of lignocellulose is a complex process in which multiple enzymes are jointly involved. In exploring the co-degradation of a certain substrate by multiple enzymes, different enzymes are combined freely for the achievement of the effective synergism. Additionally, some organic acids and small molecule aromatic compounds can also increase the enzymatic activity of lignin enzymes and improve the degradation rate of lignin. In this study, manganese peroxidase (MnP) from Irpex lacteus (I. lacteus) was heterologously expressed in food-grade Schizosaccharomyces pombe (S. pombe). The multiple enzymes co-fermentation conditions were initially screened by orthogonal tests: 0.5% CaCl2, 1% 10,000 U/g Laccase (Lac), 0.3% MnSO4, and 0.4% glucose oxidase (GOD). It was showed that the lignin degradation rate could reach 65.85% after 3 days of synergistic degradation with the addition of 0.02% Tween-80, 0.5 mM oxalic acid. This indicates that oxalic acid has a promoting effect on the activity of MnP, and the promoting effect is more significant when Tween-80 is complexed with oxalic acid.


Assuntos
Lignina , Zea mays , Lignina/metabolismo , Zea mays/metabolismo , Polissorbatos , Peroxidases/metabolismo , Oxalatos
4.
Front Nutr ; 9: 1001412, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36245477

RESUMO

To overcome the problems with current mineral supplements for laying hens including low absorption, mineral antagonism, and high cost, we developed mineral element fermentation complexes (MEFC) by synergistically fermenting bean dregs and soybean meal with strains and proteases and complexing with mineral elements. The fermentation complexation process was optimized based on the small peptide and organic acid contents and the complexation rate of mineral elements after fermentation. The optimal conditions were as follows: the total inoculum size was 5% (v/w), 15% (w/w) wheat flour middling was added to the medium, and mineral elements (with 4% CaCO3) were added after the completion of aerobic fermentation, fermentation at 34°C and 11 days of fermentation. Under these conditions, the complexation rates of Ca, Fe, Cu, Mn, and Zn were 90.62, 97.24, 73.33, 94.64, and 95.93%, respectively. The small peptide, free amino acid, and organic acid contents were 41.62%, 48.09 and 183.53 mg/g, respectively. After 60 days of fermentation, 82.11% of the Fe in the MEFC was ferrous ions, indicating that fermentation had a good antioxidant effect on ferrous ion, and the antioxidant protection period was at least 60 days. Fourier transform infrared spectroscopy showed that the mineral ions were complexed with amino and carboxyl groups. The added mineral elements promoted microbial growth, protein degradation, and organic acid secretion and significantly improved fermentation efficiency. Animal experiments showed that MEFC had positive effects on several parameters, including production performance (average daily feed intake, P < 0.05; egg production rate, P < 0.05; and average egg weight, P < 0.05), mineral absorption, intestinal morphology (villus height to crypt depth ratio in the jejunum and ileum, P < 0.05), and blood routine and biochemical indexes (red blood cells, P < 0.05; hemoglobin, P < 0.05). This study provides theoretical support for the development of mineral complexes for laying hens via fermentation.

5.
Fish Shellfish Immunol ; 76: 161-166, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29510251

RESUMO

Largemouth bass (Micropterus salmoides) rhabdovirus (MSRV) was isolated from infected juveniles of largemouth bass, and the infected fish exhibited corkscrew, irregular swimming, and crooked body. To our knowledge, the potential molecular mechanisms underlying the pathogenesis of MSRV infection remain largely unknown. In the current study, we found that MSRV infection in largemouth bass skin (LBS) cells induced typical apoptosis, evidenced by the presence of apoptotic bodies and caspase-3 activation. To further analyze the host factors involved in MSRV infection in LBS cells, the transcriptomic profiles during MSRV infection were uncovered using deep RNA sequencing technique, and several differentially expressed genes (DEGs) were validated by quantitative PCR. Our results showed that a total of 124483 unigenes were assembled. Among them, 34465 and 27273 had significant hits to those in the NR and SwissProt databases. After MSRV infection, a total of 2432 and 2480 genes which involved in multiples pathways including TNF signaling, NF-κB signaling, Toll-like receptor signaling and RIG-I signaling pathway were differentially expressed in MSRV infected LBS cells compared to mock-infected cells at 12 h, respectively. Furthermore, quantitative PCR showed that the expression levels of 9 differentially expressed genes (DEGs) related to apoptosis and interferon signaling pathway was consistent with that from transcriptomic profiles. Together, our results not only demonstrated that interferon signaling pathway and apoptosis pathway might exerted crucial roles during MSRV infection, but also provided a useful resource for subsequent investigation of other immune-related genes related to virus infection.


Assuntos
Apoptose , Bass , Doenças dos Peixes/imunologia , Imunidade Inata/genética , Interferons/metabolismo , Infecções por Rhabdoviridae/veterinária , Transdução de Sinais , Animais , Técnicas de Cultura de Células , Doenças dos Peixes/virologia , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/virologia , Análise de Sequência de RNA/veterinária , Pele/imunologia , Transcriptoma/imunologia
6.
Genes (Basel) ; 9(4)2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29561797

RESUMO

Type II toxin-antitoxin (TA) systems play important roles in bacterial stress survival by regulating cell growth or death. They are highly abundant in cyanobacteria yet remain poorly characterized. Here, we report the identification and regulation of a putative type II TA system from Synechocystis PCC6803, VapBC15. The VapBC15 system is encoded by the chromosomal operon vapBC15. Exogenous expression of VapC15 dramatically arrested cell growth of Escherichia coli and reduced the numbers of colony-forming units (CFU). The VapC15 toxicity could be which was counteracted neutralized by simultaneous or delayed production of VapB15. Biochemical analysis demonstrated the formation of VapB15-VapC15 complexes by the physical interaction between VapB15 and VapC15. Notably, the VapB15 antitoxin up-regulated the transcription of the vapBC15 operon by directly binding to the promoter region, and the VapC15 toxin abolished the up-regulatory effect by destabilizing the binding. Moreover, VapB15 can be degraded by the proteases Lons and ClpXP2s from Synechocystis PCC6803, thus activating the latent toxicity of VapBC15. These findings suggest that VapBC15 represents a genuine TA system that utilizes a distinct mechanism to regulate toxin activity.

7.
Genes (Basel) ; 7(10)2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27690109

RESUMO

Cyanophages, a group of viruses specifically infecting cyanobacteria, are genetically diverse and extensively abundant in water environments. As a result of selective pressure, cyanophages often acquire a range of metabolic genes from host genomes. The host-derived genes make a significant contribution to the ecological success of cyanophages. In this review, we summarize the host-derived metabolic genes, as well as their origin and roles in cyanophage evolution and important host metabolic pathways, such as the light-dependent reactions of photosynthesis, the pentose phosphate pathway, nutrient acquisition and nucleotide biosynthesis. We also discuss the suitability of the host-derived metabolic genes as potential diagnostic markers for the detection of genetic diversity of cyanophages in natural environments.

8.
J Virol ; 86(1): 236-45, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22031930

RESUMO

A cyanophage, PaV-LD, has been isolated from harmful filamentous cyanobacterium Planktothrix agardhii in Lake Donghu, a shallow freshwater lake in China. Here, we present the cyanophage's genomic organization and major structural proteins. The genome is a 95,299-bp-long, linear double-stranded DNA and contains 142 potential genes. BLAST searches revealed 29 proteins of known function in cyanophages, cyanobacteria, or bacteria. Thirteen major structural proteins ranging in size from 27 kDa to 172 kDa were identified by SDS-PAGE and mass-spectrometric analysis. The genome lacks major genes that are necessary to the tail structure, and the tailless PaV-LD has been confirmed by an electron microscopy comparison with other tail cyanophages and phages. Phylogenetic analysis of the major capsid proteins also reveals an independent branch of PaV-LD that is quite different from other known tail cyanophages and phages. Moreover, the unique genome carries a nonbleaching protein A (NblA) gene (open reading frame [ORF] 022L), which is present in all phycobilisome-containing organisms and mediates phycobilisome degradation. Western blot detection confirmed that 022L was expressed after PaV-LD infection in the host filamentous cyanobacterium. In addition, its appearance was companied by a significant decline of phycocyanobilin content and a color change of the cyanobacterial cells from blue-green to yellow-green. The biological function of PaV-LD nblA was further confirmed by expression in a model cyanobacterium via an integration platform, by spectroscopic analysis and electron microscopy observation. The data indicate that PaV-LD is an exceptional cyanophage of filamentous cyanobacteria, and this novel cyanophage will also provide us with a new vision of the cyanophage-host interactions.


Assuntos
Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Cianobactérias/virologia , Genoma Viral , Proteína Estafilocócica A/genética , Proteínas Virais/genética , Sequência de Aminoácidos , Bacteriófagos/classificação , Bacteriófagos/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , China , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Alinhamento de Sequência , Proteína Estafilocócica A/química , Proteína Estafilocócica A/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA