Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 389(2): 208-218, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38453525

RESUMO

Renal fibrosis is distinguished by the abnormal deposition of extracellular matrix and progressive loss of nephron function, with a lack of effective treatment options in clinical practice. In this study, we discovered that the Beclin-1-derived peptide MP1 significantly inhibits the abnormal expression of fibrosis and epithelial-mesenchymal transition-related markers, including α-smooth muscle actin, fibronectin, collagen I, matrix metallopeptidase 2, Snail1, and vimentin both in vitro and in vivo. H&E staining was employed to evaluate renal function, while serum creatinine (Scr) and blood urea nitrogen (BUN) were used as main indices to assess pathologic changes in the obstructed kidney. The results demonstrated that daily treatment with MP1 during the 14-day experiment significantly alleviated renal dysfunction and changes in Scr and BUN in mice with unilateral ureteral obstruction. Mechanistic research revealed that MP1 was found to have a significant inhibitory effect on the expression of crucial components involved in both the Wnt/ß-catenin and transforming growth factor (TGF)-ß/Smad pathways, including ß-catenin, C-Myc, cyclin D1, TGF-ß1, and p-Smad/Smad. However, MP1 exhibited no significant impact on either the LC3II/LC3I ratio or P62 levels. These findings indicate that MP1 improves renal physiologic function and mitigates the fibrosis progression by inhibiting the Wnt/ß-catenin pathway. Our study suggests that MP1 represents a promising and novel candidate drug precursor for the treatment of renal fibrosis. SIGNIFICANCE STATEMENT: This study indicated that the Beclin-1-derived peptide MP1 effectively mitigated renal fibrosis induced by unilateral ureteral obstruction through inhibiting the Wnt/ß-catenin pathway and transforming growth factor-ß/Smad pathway, thereby improving renal physiological function. Importantly, unlike other Beclin-1-derived peptides, MP1 exhibited no significant impact on autophagy in normal cells. MP1 represents a promising and novel candidate drug precursor for the treatment of renal fibrosis focusing on Beclin-1 derivatives and Wnt/ß-catenin pathway.


Assuntos
Nefropatias , Pró-Fármacos , Obstrução Ureteral , Animais , Camundongos , Proteína Beclina-1/metabolismo , Proteína Beclina-1/farmacologia , beta Catenina/metabolismo , beta Catenina/farmacologia , Fibrose , Rim , Nefropatias/tratamento farmacológico , Nefropatias/prevenção & controle , Nefropatias/metabolismo , Pró-Fármacos/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Fatores de Crescimento Transformadores/farmacologia , Obstrução Ureteral/complicações , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/metabolismo
2.
Zhongguo Zhong Yao Za Zhi ; 49(2): 294-303, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403305

RESUMO

Lung cancer is the leading cause of cancer death, and its effective treatment is a difficult medical problem. Lung cancer belongs to the traditional Chinese medicine(TCM) disease categories of lung accumulation, lung amassment, and overstrain cough. Rich theoretical basis and practical experience have been accumulated in the TCM treatment of lung cancer. Astragali Radix is one of the representatives of Qi-tonifying drugs. It mainly treat the lung cancer with the syndrome of Qi deficiency and pathogen stagnation, following the principle of reinforcing healthy Qi and eliminating patgogenic Qi. Astragali Radix exerts a variety of pharmacological activities in the treatment of lung cancer, including inhibiting tumor cell proliferation and promoting tumor cell apoptosis, inhibiting tumor invasion and migration, regulating the tumor microenvironment, suppressing tumor angiogenesis, modulating autophagy, inducing macrophage polarization, enhancing immunity, inhibiting immune escape, and reversing cisplatin resistance. The active ingredients of Astragali Radix in treating lung cancer include polysaccharides, saponins, and flavonoids. This study reviewed the pharmacological activities and active ingredients of Astragali Radix in the treatment of lung cancer, providing a basis for the development and utilization of Astragali Radix resources and active ingredients and the research and development of anti-tumor drugs.


Assuntos
Astrágalo , Medicamentos de Ervas Chinesas , Neoplasias Pulmonares , Humanos , Medicamentos de Ervas Chinesas/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Medicina Tradicional Chinesa , Raízes de Plantas , Microambiente Tumoral
3.
JACS Au ; 4(1): 164-176, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38274262

RESUMO

Dpp-imines are classic model substrates for synthetic method studies. Here, we disclose their powerful use as achiral coligands in metal-catalyzed reactions. It is highly interesting to find that the Dpp-imine can not only act as powerful ligand to create excellent chiral pockets with magnesium complexes but also, more importantly, this coligand can dramatically enhance the catalytic ability of the metal catalyst. The underlying reaction mechanism was extensively explored by conducting a series of experiments, including 31P NMR studies of the coordination complex between the Dpp-imine coligand and magnesium complexes, ESI capture results, multiple control experiments, studies and comparison of different coligands, 1H NMR studies on the relationship between the substrate and Dpp-imine coligand, as well as the relationship between the substrate and the full complexes. Furthermore, DFT calculation provided valuable insights in the role of the imine additive and demonstrated that adding the Dpp-imine coligand in the magnesium catalyst can switch the deprotonation/nucleophilic addition steps from a stepwise mechanism to a concerted process during the oxa-cyclization reaction. The crucial factors responsible for the excellent enantioselectivity and enhanced reaction efficiency brought by Dpp-imine have been extracted from the calculation model. These mechanistic experiments and DFT calculation data clearly disclose and prove the powerful and interesting functions of the Dpp-imine coligand, which also direct a novel application of this type of active imine as useful ligands in metal-catalyzed asymmetric reactions.

4.
J Ethnopharmacol ; 322: 117555, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38110130

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The herb pair Astragali Radix (AR) and Curcumae Rhizoma (vinegar-processed, VPCR), derived from the traditional Chinese medicine (TCM) text 'Yixuezhongzhongcanxilu', have long been used to treat gastrointestinal diseases, notably colitis-associated colorectal cancer (CAC). Hedysari Radix (HR), belonging to the same Leguminosae family as AR but from a different genus, is traditionally used as a substitute for AR when paired with VPCR in the treatment of CAC. However, the optimal compatibility ratio for HR-VPCR against CAC and the underlying mechanisms remain unclear. AIM OF THE STUDY: To investigate the optimal compatibility ratio and underlying mechanisms of HR-VPCR against CAC using a combination of comparative pharmacodynamics, network pharmacology, and experimental verification. MATERIALS AND METHODS: The efficacy of different compatibility ratios of HR-VPCR against CAC was evaluated using various indicators, including the body weight, colon length, tumor count, survival rate, disease activity index (DAI) score, Haemotoxylin and Eosin (H&E) pathological sections, inflammation cytokines (IL-1ß, IL-6, IL-10, TNF-α), tumor markers (K-Ras, p53), and intestinal permeability proteins (claudin-1, E-cadherin, mucin-2). Then, the optimal compatibility ratio of HR-VPCR against CAC was determined based on the fuzzy matter-element analysis by integrating the above indicators. After high-performance liquid chromatography (HPLC) analysis for the optimal compatibility ratio of HR-VPCR, potential active components of HR-VPCR were identified by TCMSP and the previous bibliographies. Swiss Targets and GeneCards were adopted to predict the targets of the active components and the targets of CAC, respectively. Then, the common targets of HR-VPCR against CAC were obtained by Venn analysis. PPI networks were constructed in STRING. GO and KEGG enrichments were visualized by the David database. Finally, the predicted pathway was experimentally validated via Western blot. RESULTS: Various compatibility ratios of HR-VPCR demonstrated notable therapeutic effects to some extent, evidenced by improvements in body weight, colon length, tumor count, pathological symptoms (DAI score), colon and organ indexes, survival rate, and modulation of inflammation factors (IL-1ß, IL-6, IL-10, TNF-α), as well as tumor markers (K-Ras, p53), and down-regulation of intestinal permeability proteins (claudin-1, E-cadherin, mucin-2) in CAC mice. Among these ratios, the ratio 4:1 represents the optimal compatibility ratio by the fuzzy matter-element analysis. Thirty active components of HR-VPCR were carefully selected, targeting 553 specific genes. Simultaneously, 2022 targets associated with CAC were identified. 88 common targets were identified after generating a Venn plot. Following PPI network analysis, 29 core targets were established, with AKT1 ranking highest among them. Further analysis via GO and KEGG enrichment identified the PI3K-AKT signaling pathway as a potential mechanism. Experimental validation confirmed that HR-VPCR intervention effectively reversed the activated PI3K-AKT signaling pathway. CONCLUSIONS: The optimal compatibility ratio for the HR-VPCR herb pair in alleviating CAC is 4:1. HR-VPCR exerts its effects by alleviating intestinal inflammation, improving intestinal permeability, and regulating the PI3K-AKT signaling pathway.


Assuntos
Astrágalo , Neoplasias Associadas a Colite , Medicamentos de Ervas Chinesas , Animais , Camundongos , Interleucina-10 , Mucina-2 , Farmacologia em Rede , Claudina-1 , Interleucina-6 , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fator de Necrose Tumoral alfa , Proteína Supressora de Tumor p53 , Biomarcadores Tumorais , Peso Corporal , Caderinas , Inflamação/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Simulação de Acoplamento Molecular
5.
J Pharmacol Exp Ther ; 386(3): 310-322, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37419684

RESUMO

Renal fibrosis is characterized by the excessive deposition of extracellular matrix that destroys and replaces the functional renal parenchyma, ultimately leading to organ failure. It is a common pathway by which chronic kidney disease can develop into end-stage renal disease, which has high global morbidity and mortality, and there are currently no good therapeutic agents available. Calcium/calmodulin-dependent protein kinase II (CaMKII) has been indicated to be closely related to the occurrence of renal fibrosis, and its specific inhibitory peptide, autocamtide-2-related inhibitory peptide (AIP), was shown to directly bind the active site of CaMKII. In this study, we examined the effect of AIP on the progression of renal fibrosis and its possible mechanism. The results showed that AIP could inhibit the expression of the fibrosis markers fibronectin, collagen I, matrix metalloproteinase 2, and α-smooth muscle actin in vivo and in vitro. Further analysis revealed that AIP could inhibit the expression of various epithelial-to-mesenchymal transformation-related markers, such as vimentin and Snail 1, in vivo and in vitro. Mechanistically, AIP could significantly inhibit the activation of CaMKII, Smad 2, Raf, and extracellular regulated protein kinases (ERK) in vitro and in vivo and reduce the expression of transforming growth factor-ß (TGF-ß) in vivo. These results suggested that AIP could alleviate renal fibrosis by inhibiting CaMKII and blocking activation of the TGF-ß/Smad2 and RAF/ERK pathways. Our study provides a possible drug candidate and demonstrates that CaMKII is a potential pharmacological target for the treatment of renal fibrosis. SIGNIFICANCE STATEMENT: We have demonstrated that AIP significantly attenuated transforming growth factor-ß-1-induced fibrogenesis and ameliorated unilateral ureteral obstruction-induced renal fibrosis through the CaMKII/TGF-ß/Smad and CaMKII/RAF/ERK signaling pathways in vitro and in vivo. Our study provides a possible drug candidate and demonstrates that CaMKII can be a potential pharmacological target for the treatment of renal fibrosis.


Assuntos
Insuficiência Renal Crônica , Fator de Crescimento Transformador beta , Humanos , Fator de Crescimento Transformador beta/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/farmacologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/farmacologia , Sistema de Sinalização das MAP Quinases , Rim , Fator de Crescimento Transformador beta1/metabolismo , Insuficiência Renal Crônica/metabolismo , Fibrose , Fatores de Crescimento Transformadores/metabolismo , Fatores de Crescimento Transformadores/farmacologia , Transição Epitelial-Mesenquimal
6.
J Am Chem Soc ; 145(1): 610-625, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36538490

RESUMO

Enantioselective [2 + 2] cyclization between an imine and a carbon-carbon double bond is a versatile strategy to build chiral azetidines. However, α-branched allenoates have never been successfully applied in [2 + 2] cyclization reactions with imines, as they always undergo Kwon's [4 + 2] annulation in previous catalytic methods. Herein, a simple in situ generated magnesium catalyst was employed to successfully achieve the enantioselective [2 + 2] cyclization reaction of DPP-imines and α-branched allenoates for the first time. Insightful experiments including KIE experiments, controlled experiments, Hammett plot analysis, and 31P NMR studies of initial intermediates indicate that the current [2 + 2] cyclization of imine most likely involves an asynchronous concerted transition state. Further mechanistic investigations by combining kinetic studies, ESI experiments, 31P NMR studies of coordination complexes, and controlled experiments on reaction rates under different catalyst loading amounts provided the coordination details for this [2 + 2] cyclization reaction between DPP-imines and α-branched allenoates. This new approach was applied to the synthesis of various chiral aza-heterocycles, including the enantioselective synthesis of the key intermediate of a lipid-lowering agent Ezetimibe.


Assuntos
Iminas , Magnésio , Reação de Cicloadição , Estrutura Molecular , Iminas/química , Estereoisomerismo , Cinética , Catálise , Carbono
7.
Int J Pharm ; 476(1-2): 1-8, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25245547

RESUMO

Endomorphins, although they have high analgesic activity and few undesirable side effects, are not in clinical use because of the blood-brain barrier (BBB). One promising solution is to use cell-penetrating peptides (CPPs). CPPs have the ability to translocate cell membranes and have been successfully applied for delivery of therapeutic molecules across the BBB. However, little is known about the transport efficiency of different conjugation strategies between cargo and CPPs. In this study, endomorphin-1 (EM-1) was conjugated with SynB3, an efficient CPP-carrier, via amide, maleimide and disulfide linkages. The delivery efficiency of three linkers was compared in terms of pharmacodynamics and in vitro metabolic stability. Near-infrared fluorescent and fluorescent microscopy experiments were applied to detect the brain uptake and distribution of CPP delivery qualitatively and quantitatively. After the most successful linkage was screened out, the further mechanisms were discussed. We concluded that compared with the other two linkages, the disulfide bond was the most efficient linkage to deliver EM-1 across the BBB and confirmed that it could be reduced at physiological conditions in the brain and release its active form. These findings indicate that for those who need to release a free drug in the brain and maintain activity, a disulfide bond might be the most efficient linkage across the BBB.


Assuntos
Barreira Hematoencefálica/metabolismo , Peptídeos Penetradores de Células/química , Oligopeptídeos/química , Oligopeptídeos/farmacocinética , Animais , Transporte Biológico , Encéfalo/metabolismo , Permeabilidade da Membrana Celular , Sistemas de Liberação de Medicamentos , Camundongos , Microscopia de Fluorescência , Permeabilidade , Distribuição Tecidual
8.
ACS Appl Mater Interfaces ; 5(15): 7014-24, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23815399

RESUMO

We develop paclitaxel (PTX) and magnetic nanoparticles (MNPs) coencapsulated, surface charge-switchable, thermosensitive poly(d,l-lactic-co-glycolic acid)-l-lysine-d-galactose (PTX-MNP-PLGA-Lys-Gal) NPs for the controlled release of the anticancer drug. The novel dual signal-responsive nanovehicle is formulated to shield off target at pH 7.4 but bind avidly to tumor cells in acidity, alleviating toxicity and side effects of the drug to normal tissues. The mechanism involves pH-sensitive NPs surface charge switching by the deblocking process of galactose molecules followed by protonation of ε-NH2 in lysine residue at acidic pH. Magnetic hyperthermia under near infrared (NIR) irradiation induced the contraction of PTX-MNP-PLGA-Lys-Gal NPs and, in turn, triggered burst release of PTX. Transmission electron microscopy (TEM), fluorescence microscope analyses, Fourier transform infrared (FTIR), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), dynamic light scattering (DLS), and ξ-potential analyses were performed to characterize physicochemical properties of the as-prepared NPs. The size range of the globule PTX-MNP-PLGA-Lys-Gal NPs after being prescreened was from 130 to 150 nm under simulated physiological medium. The high encapsulation efficiencies of MNPs and PTX were obtained, reaching 85 and 78 wt % for PTX-MNP-PLGA-Lys-Gal NPs, respectively. The tumor inhibitory rate of 78.8% reflected that the resulting NPs could be promising to treat cancer by specific binding and targeting release drug to tumor.


Assuntos
Antineoplásicos/farmacologia , Nanopartículas/química , Neoplasias/tratamento farmacológico , Paclitaxel/administração & dosagem , Linhagem Celular Tumoral , Físico-Química/métodos , Eritrócitos/citologia , Temperatura Alta , Humanos , Concentração de Íons de Hidrogênio , Lisina/química , Magnetismo , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão/métodos , Ácido Oleico/química , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Propriedades de Superfície , Difração de Raios X
9.
Pharmacol Res ; 70(1): 102-15, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23376353

RESUMO

In this paper we give a method of integrated treatment for cancer and drug-induced complications in the process of cancer therapy through dual-drug delivery system (DDDS). Two hydrophilic drugs, doxorubicin (an antitumor drug) and verapamil (an antiangiocardiopathy drug) combined preliminarily with chitosan shell coated on magnetic nanoparticles (MNPs), followed by entrapping into the PLGA nanoparticles. Further modification was conducted by conjugating tumor-targeting ligand, cyclo(Arg-Gly-Asp-D-Phe-Lys) (c(RGDfK)) peptide, onto the end carboxyl groups on the PLGA-NPs. The size of the resulting cRGD-DOX/VER-MNP-PLGA NPs was approximately 144nm under simulate physiological environment. Under present experiment condition, the entrapment efficiencies of DOX and VER were approximately 74.8 and 53.2wt% for cRGD-DOX/VER-MNP-PLGA NPs. This paper contains interesting pilot data such as NIR-triggered drug release, in vivo drug distribution studies and whole-mouse optical imaging. Histopathological examinations and electrocardiogram comparison demonstrated that the intelligent DDDS could markedly inhibit the growth of tumor and potentially offer an approach for safe cancer therapy.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Antiarrítmicos/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Nanopartículas de Magnetita/química , Peptídeos Cíclicos/administração & dosagem , Verapamil/administração & dosagem , Inibidores da Angiogênese/farmacocinética , Inibidores da Angiogênese/uso terapêutico , Animais , Antiarrítmicos/farmacocinética , Antiarrítmicos/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacocinética , Doxorrubicina/uso terapêutico , Combinação de Medicamentos , Sistemas de Liberação de Medicamentos/métodos , Eletrocardiografia , Células Hep G2 , Humanos , Ácido Láctico/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Peptídeos Cíclicos/farmacocinética , Peptídeos Cíclicos/uso terapêutico , Projetos Piloto , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Sarcoma Experimental/tratamento farmacológico , Sarcoma Experimental/metabolismo , Sarcoma Experimental/patologia , Solubilidade , Propriedades de Superfície , Distribuição Tecidual , Verapamil/farmacocinética , Verapamil/uso terapêutico
10.
Comp Biochem Physiol B Biochem Mol Biol ; 142(3): 293-301, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16140030

RESUMO

This study was designed to assess the effect of ambient temperature on lipid content, lipid classes and fatty acid compositions of heart, liver, muscle and brain in oviparous lizards, Phrynocephalus przewalskii, caught in the desert area of China. Significant differences could be observed in the contents of the total lipid and fatty acid compositions among different temperatures (4, 25 and 38 degrees C). The study showed that liver and muscle were principal sites of lipid storage. Triacylglycerol (TAG) mainly deposited in the liver, while phospholipids (PL) was identified as the predominant lipid class in the muscle and brain. Palmitic and stearic acid generally occupied the higher proportion in saturated fatty acids (SFA), while monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) consisted mainly of 16:1n-7, 18:1n-9, 18:2n-6, 18:3n-3, 20:4n-6 and 22:6n-3 regardless of tissue and temperature. These predominant fatty acids proportion fluctuations caused by temperature affected directly the ratio of unsaturated to saturated fatty acids. There was a tendency to increase the degree of unsaturation in the fatty acids of TAG and PL as environmental temperature dropped from 38 to 4 degrees C, although the different extent in different tissues. These results suggested that lipid characteristics of P. przewalskii tissues examined were influenced by ambient temperature.


Assuntos
Ácidos Graxos/química , Lipídeos/química , Lagartos , Oviparidade , Temperatura , Animais , Química Encefálica , Ácidos Graxos/isolamento & purificação , Ácidos Graxos/metabolismo , Feminino , Lipídeos/isolamento & purificação , Fígado/química , Fluidez de Membrana , Músculo Esquelético/química , Miocárdio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA