Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4845, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844530

RESUMO

Piezoceramic membranes have emerged as a prominent solution for membrane fouling control. However, the prevalent use of toxic lead and limitations of vibration-based anti-fouling mechanism impede their wider adoption in water treatment. This study introduces a Mn/BaTiO3 piezoceramic membrane, demonstrating a promising in-situ anti-fouling efficacy and mechanism insights. When applied to an Alternating Current at a resonant frequency of 20 V, 265 kHz, the membrane achieves optimal vibration, effectively mitigating various foulants such as high-concentration oil (2500 ppm, including real industrial oil wastewater), bacteria and different charged inorganic colloidal particles, showing advantages over other reported piezoceramic membranes. Importantly, our findings suggest that the built-in ultrasonic vibration of piezoceramic membranes can generate reactive oxygen species. This offers profound insights into the distinct anti-fouling processes for organic and inorganic wastewater, supplementing and unifying the traditional singular vibrational anti-fouling mechanism of piezoceramic membranes, and potentially propelling the development of piezoelectric catalytic membranes.

2.
Chem Commun (Camb) ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913438

RESUMO

Herein, we present a catalyst-free contact-electro-catalytic method for synthesizing hydrogen peroxide (H2O2) by combining continuous agitation with a poly(tetrafluoroethylene) (PTFE) stir bar and ultrasonication. A high H2O2 production rate of 256.6 µM h-1 is achieved under ambient conditions without adding particle catalysts and sacrificial agents, which is competitive with recent advancements in redox technology. Eco-friendliness, convenience and efficiency make this process a promising alternative method for H2O2 synthesis.

3.
Proc Natl Acad Sci U S A ; 121(23): e2400159121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38814870

RESUMO

Lithium is an emerging strategic resource for modern energy transformation toward electrification and decarbonization. However, current mainstream direct lithium extraction technology via adsorption suffers from sluggish kinetics and intensive water usage, especially in arid/semiarid and cold salt-lake regions (natural land brines). Herein, an efficient proof-of-concept integrated solar microevaporator system is developed to realize synergetic solar-enhanced lithium recovery and water footprint management from hypersaline salt-lake brines. The 98% solar energy harvesting efficiency of the solar microevaporator system, elevating its local temperature, greatly promotes the endothermic Li+ extraction process and solar steam generation. Benefiting from the photothermal effect, enhanced water flux, and enriched local Li+ supply in nanoconfined space, a double-enhanced Li+ recovery capacity was delivered (increase from 12.4 to 28.7 mg g-1) under one sun, and adsorption kinetics rate (saturated within 6 h) also reached twice of that at 280 K (salt-lake temperature). Additionally, the self-assembly rotation feature endows the microevaporator system with distinct self-cleaning desalination ability, achieving near 100% water recovery from hypersaline brines for further self-sufficient Li+ elution. Outdoor comprehensive solar-powered experiment verified the feasibility of basically stable lithium recovery ability (>8 mg g-1) directly from natural hypersaline salt-lake brines with self-sustaining water recycling for Li+ elution (440 m3 water recovery per ton Li2CO3). This work offers an integrated solution for sustainable lithium recovery with near zero water/carbon consumption toward carbon neutrality.

4.
Sci Adv ; 10(22): eadj3760, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820164

RESUMO

Intrinsic water evaporation demands a high energy input, which limits the efficacy of conventional interfacial solar evaporators. Here, we propose a nanoconfinement strategy altering inherent properties of water for solar-driven water evaporation using a highly uniform composite of vertically aligned Janus carbon nanotubes (CNTs). The water evaporation from the CNT shows the unexpected diameter-dependent evaporation rate, increasing abnormally with decreasing nanochannel diameter. The evaporation rate of CNT10@AAO evaporator thermodynamically exceeds the theoretical limit (1.47 kg m-2 hour-1 under one sun). A hybrid experimental, theoretical, and molecular simulation approach provided fundamental evidence of different nanoconfined water properties. The decreased number of H-bonds and lower interaction energy barrier of water molecules within CNT and formed water clusters may be one of the reasons for the less evaporative energy activating rapid nanoconfined water vaporization.

5.
Angew Chem Int Ed Engl ; 63(19): e202402440, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38426574

RESUMO

Perfluoroalkyl substances (PFASs) are persistent and toxic to human health. It is demanding for high-efficient and green technologies to remove PFASs from water. In this study, a novel PFAS treatment technology was developed, utilizing polytetrafluoroethylene (PTFE) particles (1-5 µm) as the catalyst and a low frequency ultrasound (US, 40 kHz, 0.3 W/cm2) for activation. Remarkably, this system can induce near-complete defluorination for different structured PFASs. The underlying mechanism relies on contact electrification between PTFE and water, which induces cumulative electrons on PTFE surface, and creates a high surface voltage (tens of volts). Such high surface voltage can generate abundant reactive oxygen species (ROS, i.e., O2⋅-, HO⋅, etc.) and a strong interfacial electrostatic field (IEF of 109~1010 V/m). Consequently, the strong IEF significantly activates PFAS molecules and reduces the energy barrier of O2⋅- nucleophilic reaction. Simultaneously, the co-existence of surface electrons (PTFE*(e-)) and HO⋅ enables synergetic reduction and oxidation of PFAS and its intermediates, leading to enhanced and thorough defluorination. The US/PTFE method shows compelling advantages of low energy consumption, zero chemical input, and few harmful intermediates. It offers a new and promising solution for effectively treating the PFAS-contaminated drinking water.

6.
Nano Lett ; 24(9): 2812-2820, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396345

RESUMO

Electroreduction of waste nitrate to valuable ammonia offers a green solution for environmental restoration and energy storage. However, the electrochemical self-reconstruction of catalysts remains a huge challenge in terms of maintaining their stability, achieving the desired active sites, and managing metal leaching. Herein, we present an electrical pulse-driven Co surface reconstruction-coupled Coδ+ shuttle strategy for the precise in situ regulation of the Co(II)/Co(III) redox cycle on the Co-based working electrode and guiding the dissolution and redeposition of Co-based particles on the counter electrode. As result, the ammonia synthesis performance and stability are significantly promoted while cathodic hydrogen evolution and anodic ammonia oxidation in a membrane-free configuration are effectively blocked. A high rate of ammonia production of 1.4 ± 0.03 mmol cm-2 h-1 is achieved at -0.8 V in a pulsed system, and the corresponding nitrate-to-ammonia Faraday efficiency is 91.7 ± 1.0%. This work holds promise for the regulation of catalyst reactivity and selectivity by engineering in situ controllable structural and chemical transformations.

7.
Environ Sci Technol ; 58(1): 925-934, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38117535

RESUMO

Hydrogen peroxide (H2O2), as a critical green chemical, has received immense attention in energy and environmental fields. The ability to produce H2O2 in earth-abundant water without relying on low solubility oxygen would be a sustainable and potentially economic process, applicable even to anaerobic microenvironments, such as groundwater treatment. However, the direct water to H2O2 process is currently hindered by low selectivity and low production rates. Herein, we report that poly(tetrafluoroethylene) (PTFE), a commonly used inert polymer, can act as an efficient triboelectric catalyst for H2O2 generation. For example, a high H2O2 production rate of 24.8 mmol gcat-1 h-1 at a dosage of 0.01 g/L PTFE was achieved under the condition of pure water, ambient atmosphere, and no sacrificial agents, which exceeds the performance of state-of-the-art aqueous H2O2 powder catalysts. Electron spin resonance and isotope experiments provide strong evidence that water-PTFE tribocatalysis can directly oxidize water to produce H2O2 under both anaerobic and aerobic conditions, albeit with different synthetic pathways. This study demonstrates a potential strategy for green and effective tribocatalytic H2O2 production that may be particularly useful toward environmental applications.


Assuntos
Peróxido de Hidrogênio , Oxigênio , Polímeros , Água , Politetrafluoretileno
8.
Environ Sci Technol ; 57(50): 21459-21469, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38056012

RESUMO

The hydrated electron (eaq-) system is typically suitable for degrading perfluoroalkyl substances (PFASs). To enhance eaq- utilization, we synthesized a new indole compound (DIHA) that forms stable nanospheres (100-200 nm) in water via a supramolecular assembly. Herein, the DIHA nanoemulsion system exhibits high degradation efficiencies toward a broad category of PFASs, regardless of the headgroup, chain length, and branching structure, under UV (254 nm) irradiation. The strong adsorption of PFAS on the DIHA surface ensures its effective degradation/defluorination. Quenching experiments further demonstrated that the reaction took place on the surface of DIHA nanospheres. This specific heterogeneous surface reaction unveiled novel PFAS degradation and defluorination mechanisms that differ from previously reported eaq- systems. First, the photogenerated surface electrons nonselectively attacked multiple C-F bonds of the -CF2- chain. This plays a dominant degrading/defluorinating role in the DIHA system. Second, abundant hydroxyl radicals (•OH) were also produced, leading to synergistic reduction (by surface electron) and oxidation (by surface •OH) in a single system. This facilitates faster and deeper defluorination of different structured PFASs through multiple pathways. The new mechanism inspires the design of innovative organo-heterogeneous eaq- systems possessing synergistic reduction and oxidation functions, thereby making them potentially effective for treating PFAS-contaminated water.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Água , Oxirredução , Elétrons , Adsorção , Poluentes Químicos da Água/análise
9.
Angew Chem Int Ed Engl ; 62(24): e202217337, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37074107

RESUMO

Electrocatalytic nitrate reduction sustainably produces ammonia and alleviates water pollution, yet is still challenging due to the kinetic mismatch and hydrogen evolution competition. Cu/Cu2 O heterojunction is proven effective to break the rate-determining NO3 - -to-NO2 - step for efficient NH3 conversion, while it is unstable due to electrochemical reconstruction. Here we report a programmable pulsed electrolysis strategy to achieve reliable Cu/Cu2 O structure, where Cu is oxidized to CuO during oxidation pulse, then regenerating Cu/Cu2 O upon reduction. Alloying with Ni further modulates hydrogen adsorption, which transfers from Ni/Ni(OH)2 to N-containing intermediates on Cu/Cu2 O, promoting NH3 formation with a high NO3 - -to-NH3 Faraday efficiency (88.0±1.6 %, pH 12) and NH3 yield rate (583.6±2.4 µmol cm-2 h-1 ) under optimal pulsed conditions. This work provides new insights to in situ electrochemically regulate catalysts for NO3 - -to-NH3 conversion.

10.
J Phys Chem B ; 127(14): 3164-3174, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36996492

RESUMO

Effective and stable antibiofouling surfaces and interfaces have long been of research interest. In this study, we designed, fabricated, and evaluated a surface coated with insulated interlaced electrodes for bacterial fouling reduction. The electrodes were printed Ag filaments of 100 µm width and 400 µm spacing over an area of 2 × 2 cm2. The insulating Ag electrode coating material was polydimethylsiloxane (PDMS) or thermoplastic polyurethane (TPU) with a thickness of 10 to 40 µm. To evaluate the antibiofouling potential, E. coli inactivation after 2 min contact with the electrified surface and P. fluorescens detachment after 15 and 40 h growth were examined. The extent of bacterial inactivation was related to the insulating material, coating thickness, and applied voltage (magnitude and AC vs DC). A high bacterial inactivation (>98%) was achieved after only 2 min of treatment at 50 V AC and 10 kHz using a 10 µm TPU coating. P. fluorescens detachment after 15 and 40 h incubation in the absence of applied potential was completed with simultaneous cross-flow rinsing and AC application. Higher AC voltages and longer cross-flow rinsing times resulted in greater bacterial detachment with bacterial coverage able to be reduced to <1% after only 2 min of rinsing at 50 V AC and 10 kHz. Theoretical electric field analysis indicated that at 10 V the field strength penetrating the aqueous solution is nonuniform (∼16,000-20,000 V m-1 for the 20 µm TPU) and suggests that dielectrophoresis plays a key role in bacterial detachment. The bacterial inactivation and detachment trends observed in this study indicate that this technique has merit for future antibiofouling surface development.


Assuntos
Eletricidade , Escherichia coli , Eletrodos , Poliuretanos
11.
Nat Commun ; 14(1): 800, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781887

RESUMO

Temporal control of delivery and release of drugs in tumors are important in improving therapeutic outcomes to patients. Here, we report a sequential stimuli-triggered in situ self-assembly and disassembly strategy to direct delivery and release of theranostic drugs in vivo. Using cisplatin as a model anticancer drug, we design a stimuli-responsive small-molecule cisplatin prodrug (P-CyPt), which undergoes extracellular alkaline phosphatase-triggered in situ self-assembly and succeeding intracellular glutathione-triggered disassembly process, allowing to enhance accumulation and elicit burst release of cisplatin in tumor cells. Compared with cisplatin, P-CyPt greatly improves antitumor efficacy while mitigates off-target toxicity in mice with subcutaneous HeLa tumors and orthotopic HepG2 liver tumors after systemic administration. Moreover, P-CyPt also produces activated near-infrared fluorescence (at 710 nm) and dual photoacoustic imaging signals (at 700 and 750 nm), permitting high sensitivity and spatial-resolution delineation of tumor foci and real-time monitoring of drug delivery and release in vivo. This strategy leverages the advantages offered by in situ self-assembly with those of intracellular disassembly, which may act as a general platform for the design of prodrugs capable of improving drug delivery for cancer theranostics.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Pró-Fármacos , Animais , Camundongos , Cisplatino/farmacologia , Medicina de Precisão , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico
12.
Proc Natl Acad Sci U S A ; 120(9): e2217256120, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36802424

RESUMO

Crystallographic control of crystals as catalysts with precise geometrical and chemical features is significantly important to develop sustainable chemistry, yet highly challenging. Encouraged by first principles calculations, precise structure control of ionic crystals could be realized by introducing an interfacial electrostatic field. Herein, we report an efficient in situ dipole-sourced electrostatic field modulation strategy using polarized ferroelectret, for crystal facet engineering toward challenging catalysis reactions, which avoids undesired faradic reactions or insufficient field strength by conventional external electric field. Resultantly, a distinct structure evolution from tetrahedron to polyhedron with different dominated facets of Ag3PO4 model catalyst was obtained by tuning the polarization level, and similar oriented growth was also realized by ZnO system. Theoretical calculations and simulation reveal that the generated electrostatic field can effectively guide the migration and anchoring of Ag+ precursors and free Ag3PO4 nuclei, achieving oriented crystal growth by thermodynamic and kinetic balance. The faceted Ag3PO4 catalyst exhibits high performance in photocatalytic water oxidation and nitrogen fixation for valuable chemicals production, validating the effectiveness and potential of this crystal regulation strategy. Such an electrically tunable growth concept by electrostatic field provides new synthetic insights and great opportunity to effectively tailor the crystal structures for facet-dependent catalysis.

13.
Nature ; 608(7921): 69-73, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35922500

RESUMO

Pressure-driven membranes is a widely used separation technology in a range of industries, such as water purification, bioprocessing, food processing and chemical production1,2. Despite their numerous advantages, such as modular design and minimal footprint, inevitable membrane fouling is the key challenge in most practical applications3. Fouling limits membrane performance by reducing permeate flux or increasing pressure requirements, which results in higher energetic operation and maintenance costs4-7. Here we report a hydraulic-pressure-responsive membrane (PiezoMem) to transform pressure pulses into electroactive responses for in situ self-cleaning. A transient hydraulic pressure fluctuation across the membrane results in generation of current pulses and rapid voltage oscillations (peak, +5.0/-3.2 V) capable of foulant degradation and repulsion without the need for supplementary chemical cleaning agents, secondary waste disposal or further external stimuli3,8-13. PiezoMem showed broad-spectrum antifouling action towards a range of membrane foulants, including organic molecules, oil droplets, proteins, bacteria and inorganic colloids, through reactive oxygen species (ROS) production and dielectrophoretic repulsion.

14.
Environ Sci Technol ; 56(15): 10997-11005, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35860842

RESUMO

Membrane fouling compromises the benefits of membrane technology, leading to its performance deterioration and incremental cost. Coupling with an electric field has been attractive but is limited by the electrical dependence of the electrophoresis (EP) mechanism and undesired faradic reactions. This study reports a universal dielectrophoresis-based (DEP) membrane antifouling strategy for electronegative, electropositive, and neutral colloidal foulants, which depends on the particle polarizability rather than its charge. The porous Ni@PVDF model electroconductive membrane was fabricated to construct a nonuniform electric field inducing DEP, while applying a low voltage avoided side electrochemical reactions. For electronegative SiO2(-) and electropositive Al2O3(+) particles with a lower relative permittivity than the medium water (78), the membrane permeability all remarkably increased by 90.1% under AC/DC (±1.0 V) fields. By contrast, serious membrane fouling occurred for the BaTiO3 colloids with a higher relative permittivity (∼2000). Notably, the permittivity of nearly all colloids in wastewater treatment is much less than that of water, which makes the dielectrophoresis-based antifouling strategy universal. The theoretical simulation systematically analyzed the forces on particles including DEP, EP, and others, indicating that the formed protected area on the membrane pore wall by DEP forces prevented the irreversible membrane blockage of colloids and facilitated loose cake layer formation for alleviating membrane fouling. In brief, this work reported a hopeful concept for dielectrophoresis-based membrane antifouling and verified its antifouling mechanism.


Assuntos
Incrustação Biológica , Incrustação Biológica/prevenção & controle , Coloides , Eletroforese/métodos , Dióxido de Silício , Água
15.
Chemosphere ; 303(Pt 2): 135119, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35642858

RESUMO

The energy-induced peroxydisulfate (PDS) activation is a green and effective approach for pollutant degradation, while the huge energy consumption would significantly increase the cost of wastewater treatment. In this study, by taking carbon nanotubes (CNTs) membrane as the light to heat (LTH) conversion materials, we developed a photothermal PDS activation process for degradation of organic contaminants in a flow-by reactor, with hydroxyl radicals (•OH) and sulfate radicals (SO4•-) as the main reactive species. This system has excellent in-situ LTH conversion performance and heat transfer ability. As a result, various pollutants are degraded with an efficiency higher than 90%. More importantly, the LTH device exhibits satisfying stability and could be used for pollutant (i.e., methyl orange (MO)) removal under solar irradiation. In addition, some important factors (i.e., irradiation distance, residence time, solution pH, and PDS dosage) that might significantly influence the removal efficiency of pollutants are optimized. This work provides a novel perspective for the activation of PDS via CNTs as photothermal materials for pollutant degradation with a flow-by reactor.


Assuntos
Poluentes Ambientais , Nanotubos de Carbono , Purificação da Água , Membranas , Oxirredução
16.
Water Res ; 215: 118245, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35290871

RESUMO

Recovering oil from oily wastewater is not only for economic gains but also for mitigating environmental pollution. However, demulsification of oil droplets stabilized with surfactants is challenging because of their low surface energy. Although the widely used oil/water separation membrane technologies based on size screening have attracted considerable attention in the past few decades, they are incapable of demulsification of stabilized oil emulsions and the membrane concentrates often require post-processing. Herein, the piezoelectric ceramic membrane (PCM), which can respond to the inherent transmembrane pressure in the pressure-driven membrane processes, was employed to transform hydraulic pressure pulses into electroactive responses to in situ demulsification. The pulsed transmembrane pressure on the PCM results in the generation of considerable rapid voltage oscillations over 3.2 V and a locally high electric field intensity of 7.2 × 107 V/m, which is capable of electrocoalescence with no additional stimuli or high voltage devices. Negative dielectrophoresis (DEP) force occurred in this membrane process and repelled the large size of oil after demulsification away from the PCM surface, ensuring continuous membrane demulsification and oil/water separation. Overall, PCM provides a further opportunity to develop an environmentally friendly and energy-saving electroresponsive membrane technology for practical applications in wastewater treatment.


Assuntos
Óleos , Purificação da Água , Emulsões , Tensoativos , Águas Residuárias
17.
Chemosphere ; 291(Pt 2): 132797, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34742762

RESUMO

Magnetic stir bars are routinely used by most of researchers in the fields of chemistry, biology and environment etc. An incredible phenomenon, in which the magnetic stirring increased reaction rate by tens of times under ultrasound irradiation, impelled us to explore roles of magnetic stirring. Unexpectedly, the thimbleful nano PTFE particles, from shell of magnetic stir bar, were exfoliated during magnetic stirring and account for ultrahigh tribocatalytic and piezocatalytic activities under ultrasonic irradiation. Reactive oxygen species (ROS), such as hydroxyl radical (OH), superoxide radicals (O2-) and singlet oxygen (1O2) were generated in the present of PTFE under ultrasound irradiation, which is desired in the pollution control. The newly discovered PTFE activity, against the conventional wisdom that PTFE is inert, which also reminds the researchers that the trace amount of PTFE ground during magnetic stirring may inadvertently botch our experiments and introduce false positive results, especially involving routine magnetic stirring and ultrasound irradiation operation in laboratory. In addition, the safety and inertness of PTFE may require further review in PTFE-based commercial, industrial and biomedical settings.


Assuntos
Fenômenos Magnéticos , Magnetismo , Fluorocarbonos , Fenômenos Físicos
18.
ACS Nano ; 15(10): 16298-16313, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34590840

RESUMO

Ultrasound (US)-activated nanoagents capable of producing cytotoxic species have been promising for the treatment of deep-seated tumors; however, poor tumor uptake and insufficient generation of cytotoxic agents have largely limited their therapeutic efficacy in vivo. Herein, we report a hybrid FeCuS-lipid nanoparticle (AIBA@FeCuS-FeCO) by amphiphilic lipids-assisted emulsion of a free radical initiator (AIBA), a radical-sensitive CO donor (Fe3(CO)12), and radical-degradable FeCuS nanodisks for US-activated synergistic therapy of deep-located orthotopic gastric tumors in living mice. Upon US irradiation, AIBA@FeCuS-FeCO could be degraded and release cytotoxic AIBA radicals, CO, Fe2+, and Cu2+, allowing us to (1) enhance tumor uptake of AIBA@FeCuS-FeCO through CO-mediated vasodilation, (2) promote hydroxyl radical production and induce tumor ferroptosis via intracellular accumulation of Fe2+/Cu2+, and (3) kill tumor cells. Moreover, the subsequent administration of disulfiram (DSF) could further chelate with the liberated Cu2+, yielding toxic bis(N,N-diethyl dithiocarbamato)copper(II) chelates to synergize the therapeutic effect to ablate deep-seated orthotopic gastric tumors.


Assuntos
Antineoplásicos , Nanopartículas , Animais , Linhagem Celular Tumoral , Cobre , Dissulfiram , Lipídeos , Camundongos
19.
Nat Commun ; 12(1): 3508, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108484

RESUMO

Controlled generation of reactive oxygen species (ROS) is essential in biological, chemical, and environmental fields, and piezoelectric catalysis is an emerging method to generate ROS, especially in sonodynamic therapy due to its high tissue penetrability, directed orientation, and ability to trigger in situ ROS generation. However, due to the low piezoelectric coefficient, and environmental safety and chemical stability concerns of current piezoelectric ROS catalysts, novel piezoelectric materials are urgently needed. Here, we demonstrate a method to induce polarization of inert poly(tetrafluoroethylene) (PTFE) particles ( ~ 1-5 µm) into piezoelectric electrets with a mild and convenient ultrasound process. Continued ultrasonic irradiation of the PTFE electrets generates ROS including hydroxyl radicals (•OH), superoxide (•O2-) and singlet oxygen (1O2) at rates significantly faster than previously reported piezoelectric catalysts. In summary, ultrasonic activation of inert PTFE particles is a simple method to induce permanent PTFE polarization and to piezocatalytically generate aqueous ROS that is desirable in a wide-range of applications from environmental pollution control to biomedical therapy.

20.
Environ Sci Technol ; 55(3): 2110-2120, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33427455

RESUMO

Oxygen vacancies (OVs) play a crucial role in the catalytic activity of metal-based catalysts; however, their activation mechanism toward peroxydisulfate (PDS) still lacks reasonable explanation. In this study, by taking bismuth bromide (BiOBr) as an example, we report an OV-mediated PDS activation process for degradation of bisphenol A (BPA) employing singlet oxygen (1O2) as the main reactive species under alkaline conditions. The experimental results show that the removal efficiency of BPA is proportional to the number of OVs and is highly related to the dosage of PDS and the catalyst. The surface OVs of BiOBr provide ideal sites for the inclusion of hydroxyl ions (HO-) to form BiIII-OH species, which are regarded as the major active sites for the adsorption and activation of PDS. Unexpectedly, the activation of PDS occurs through a nonradical mechanism mediated by 1O2, which is generated via multistep reactions, involving the formation of an intermediate superoxide radical (O2•-) and the redox cycle of Bi(III)/Bi(IV). This work is dedicated to the in-depth mechanism study into PDS activation over OV-rich BiOBr samples and provides a novel perspective for the activation of peroxides by defective materials in the absence of additional energy supply or aqueous transition metal ions.


Assuntos
Oxigênio , Oxigênio Singlete , Catálise , Oxirredução , Peróxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA