RESUMO
In the field of breast cancer treatment, the immunotherapy involving natural killer (NK) cells is increasingly highlighting its distinct potential and significance. Members of the interleukin (IL) family play pivotal regulatory roles in the growth, differentiation, survival, and apoptosis of NK cells, and are central to their anti-tumor activity. These cytokines enhance the ability of NK cells to recognize and eliminate tumor cells by binding to specific receptors and activating downstream signaling pathways. Furthermore, interleukins do not function in isolation; the synergistic or antagonistic interactions between different interleukins can drive NK cells toward various functional pathways, ultimately leading to diverse outcomes for breast cancer patients. This paper reviews the intricate relationship between NK cells and interleukins, particularly within the breast cancer tumor microenvironment. Additionally, we summarize the latest clinical studies and advancements in NK cell therapy for breast cancer, along with the potential applications of interleukin signaling in these therapies. In conclusion, this article underscores the critical role of NK cells and interleukin signaling in breast cancer treatment, providing valuable insights and a significant reference for future research and clinical practice.
Assuntos
Neoplasias da Mama , Interleucinas , Células Matadoras Naturais , Transdução de Sinais , Microambiente Tumoral , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Microambiente Tumoral/imunologia , Interleucinas/imunologia , Interleucinas/metabolismo , AnimaisRESUMO
BACKGROUND: Mesenchymal stem cells (MSCs) are multipotent stem cells that are under investigation for use in clinical trials because they are capable of self-renewal and differentiating into different cell types under defined conditions. Nonetheless, the therapeutic effects of MSCs have been constrained by low engraftment rates, cell fusion, and cell survival. Various strategies have been explored to improve the therapeutic efficacy of MSCs, with platelet-derived growth factor (PDGF)-BB emerging as a promising candidate. To enhance our comprehension of the impact of PDGF-BB on the gene expression profile and chromosomal accessibility of MSCs, RNA-sequencing and analysis of chromatin accessibility profiles were conducted on three human primary MSCs in culture, both with and without stimulation by PDGF-BB. RESULTS: Integrative analysis of gene expression and chromatin accessibility demonstrated that PDGF-BB treatment modified the chromatin accessibility landscape, marking regions for activation or repression through the AP-1 family transcription factors TEAD, CEBP, and RUNX2. These changes in AP-1 transcription factor expression, in turn, led to cell proliferation and differentiation potential towards osteoblasts, adipocytes, or chondrocytes. The degree of MSC differentiation varies among cells isolated from different donors. The presence of an enrichment of exosome-related genes is also noted among all the differentially expressed genes. CONCLUSIONS: In conclusion, the observed changes in AP-1 transcription factor expression not only induced cellular proliferation and differentiation, but also revealed variations in the degree of MSC differentiation based on donor-specific differences. Moreover, the enrichment of exosome-related genes among differentially expressed genes suggests a potential significant role for PDGF-BB in facilitating intercellular communication.
Assuntos
Becaplermina , Diferenciação Celular , Cromatina , Células-Tronco Mesenquimais , Transcriptoma , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Humanos , Becaplermina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Cromatina/metabolismo , Cromatina/genética , Células Cultivadas , Proliferação de Células/efeitos dos fármacos , Perfilação da Expressão Gênica , Células da Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Proteínas Proto-Oncogênicas c-sis/farmacologiaRESUMO
BACKGROUND: Malnutrition is a complication of chronic kidney disease (CKD). Whether malnutrition, assessed via the geriatric nutritional risk index (GNRI), is associated with the incidence and risk of CKD in older individuals remains unclear. METHODS: Data from the National Health and Nutrition Examination Survey and the UK Biobank database were used. Older participants over 60 years old with available data for GNRI assessment and CKD diagnosis were enrolled. Logistic regression models and Cox regression models were used to assess associations between the geriatric nutritional risk index and the risk of and mortality associated with CKD. RESULTS: This study enrolled 13,162 participants from the NHANES and 66,326 participants from the UK Biobank. We identified 6,135 and 16,662 CKD patients in the NHANES and UK Biobank, respectively, with the majority being male (74% in the NHANES and 52% in the UK Biobank). The average age of CKD patients was 72.3 (SD 7.2) years in the NHANES and 64.9 (SD 2.9) years in the UK Biobank. The median follow-up times of older CKD patients were 81 months and 162 months in the NHANES and UK Biobank, respectively. According to the cross-sectional analysis, individuals with a lower GNRI had an increased likelihood of having CKD, with odds ratios of 1.38 (95% CI: 1.05-1.80, P = 0.020) in the NHANES and 2.35 (95% CI: 1.89-2.92, P < 0.001) in the UK Biobank. According to our analysis of the risk of incident CKD in the UK Biobank, a lower GNRI was associated with a greater incidence of CKD (HR: 1.11, 95% CI: 1.04-1.18; P = 0.002). According to the analysis of the risk of mortality, a lower GNRI was associated with an increased risk of death among older CKD patients (NHANES: HR: 1.69, 95% CI: 1.13-2.53, P = 0.011; UK Biobank: HR: 2.28, 95% CI: 1.94-2.69, P < 0.001). CONCLUSION: Malnutrition assessed by the GNRI was significantly and independently associated with the incidence of CKD. Moreover, CKD patients with malnutrition also have a high risk of mortality.
Assuntos
Avaliação Geriátrica , Desnutrição , Inquéritos Nutricionais , Insuficiência Renal Crônica , Humanos , Masculino , Feminino , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/mortalidade , Idoso , Pessoa de Meia-Idade , Reino Unido/epidemiologia , Medição de Risco , Desnutrição/epidemiologia , Estudos Transversais , Avaliação Nutricional , Fatores de Risco , Incidência , Estados Unidos/epidemiologia , Idoso de 80 Anos ou maisRESUMO
Using atomic force microscopy experiments and molecular dynamics simulations of gold nanoislands on graphite, we investigate why ultralow friction commonly associated with structural lubricity can be observed even under ambient conditions. Measurements conducted within a few days after sample synthesis reveal previously undiscovered phenomena in structurally lubric systems: rejuvenation, a drop in kinetic friction of an order of magnitude shortly after the onset of sliding; aging, a significant increase in kinetic friction forces after a rest period of 30 min or more; and switches, spontaneous jumps between distinct friction branches. These three effects are drastically suppressed a few weeks later. Imaging of a contamination layer and simulations provide a consistent picture of how single- and double-layer contamination underneath the gold nanoislands as well as contamination surrounding the nanoislands affect structural lubricity without leading to its breakdown.
RESUMO
Alcohol use disorder (AUD) is likely associated with complex transcriptional alterations in addiction-relevant brain regions. We characterize AUD-associated differences in cell type-specific gene expression and chromatin accessibility in the caudate nucleus by conducting a single-nucleus RNA-seq assay and a single-nucleus RNA-seq + ATAC-seq (multiome) assay on caudate tissue from 143 human postmortem brains (74 with AUD). We identified 17 cell types. AUD was associated with a higher proportion of microglia in an activated state and more astrocytes in a reactive state. There was widespread evidence for differentially expressed genes across cell types with the most identified in oligodendrocytes and astrocytes, including genes involved in immune response and synaptic regulation, many of which appeared to be regulated in part by JUND and OLIG2. Microglia-astrocyte communication via interleukin-1 beta, and microglia-astrocyte-oligodendrocyte interaction via transforming growth factor beta 1 were increased in individuals with AUD. Expression quantitative trait loci analysis revealed potential driver genes of AUD, including ADAL, that may protect against AUD in medium spiny neurons and interneurons. This work provides a thorough profile of the effects of AUD in the human brain and identifies several promising genes for further study.
RESUMO
Although human cerebellum is known to be neuropathologically impaired in Alzheimer's disease (AD) and AD-related dementias (ADRD), the cell type-specific transcriptional and epigenomic changes that contribute to this pathology are not well understood. Here, we report single-nucleus multiome (snRNA-seq and snATAC-seq) analysis of 103,861 nuclei isolated from cerebellum from 9 human cases of AD/ADRD and 8 controls, and with frontal cortex of 6 AD donors for additional comparison. Using peak-to-gene linkage analysis, we identified 431,834 significant linkages between gene expression and cell subtype-specific chromatin accessibility regions enriched for candidate cis-regulatory elements (cCREs). These cCREs were associated with AD/ADRD-specific transcriptomic changes and disease-related gene regulatory networks, especially for RAR Related Orphan Receptor A (RORA) and E74 Like ETS Transcription Factor 1 (ELF1) in cerebellar Purkinje cells and granule cells, respectively. Trajectory analysis of granule cell populations further identified disease-relevant transcription factors, such as RORA, and their regulatory targets. Finally, we prioritized two likely causal genes, including Seizure Related 6 Homolog Like 2 (SEZ6L2) in Purkinje cells and KAT8 Regulatory NSL Complex Subunit 1 (KANSL1) in granule cells, through integrative analysis of cCREs derived from snATAC-seq, genome-wide AD/ADRD loci, and Hi-C looping data. This first cell subtype-specific regulatory landscape in the human cerebellum identified here offer novel genomic and epigenomic insights into the neuropathology and pathobiology of AD/ADRD and other neurological disorders if broadly applied.
RESUMO
Single-nucleus analysis allows robust cell-type classification and helps to establish relationships between chromatin accessibility and cell-type-specific gene expression. Here, using samples from 92 women of several genetic ancestries, we developed a comprehensive chromatin accessibility and gene expression atlas of the breast tissue. Integrated analysis revealed ten distinct cell types, including three major epithelial subtypes (luminal hormone sensing, luminal adaptive secretory precursor (LASP) and basal-myoepithelial), two endothelial and adipocyte subtypes, fibroblasts, T cells, and macrophages. In addition to the known cell identity genes FOXA1 (luminal hormone sensing), EHF and ELF5 (LASP), TP63 and KRT14 (basal-myoepithelial), epithelial subtypes displayed several uncharacterized markers and inferred gene regulatory networks. By integrating breast epithelial cell gene expression signatures with spatial transcriptomics, we identified gene expression and signaling differences between lobular and ductal epithelial cells and age-associated changes in signaling networks. LASP cells and fibroblasts showed genetic ancestry-dependent variability. An estrogen receptor-positive subpopulation of LASP cells with alveolar progenitor cell state was enriched in women of Indigenous American ancestry. Fibroblasts from breast tissues of women of African and European ancestry clustered differently, with accompanying gene expression differences. Collectively, these data provide a vital resource for further exploring genetic ancestry-dependent variability in healthy breast biology.
RESUMO
Lysophosphatidylcholine acyltransferase 1 (LPCAT1) is a crucial enzyme involved in phospholipid metabolism and is essential for maintaining the structure and functionality of biofilms. However, a comprehensive examination of the role of LPCAT1 across various cancer types is lacking. Multiple public databases have been utilized to examine LPCAT1 expression, genetic alterations, methylation, prognosis, biological function, and its relationship with antitumor immunity in different cancer types. The function of LPCAT1 in glioma, breast cancer and liver cancer cells was further verified using in vitro experiments. Our research indicated that LPCAT1 is upregulated in various cancers and is accompanied by a wide range of amplification mutations. Higher LPCAT1 expression was associated with poorer prognosis across multiple cancers. Further in vitro experiments demonstrated that interfering with LPCAT1 expression increased apoptosis in glioma, breast cancer and liver cancer cells and concurrently suppressed their proliferation and migration. Functional enrichment analysis revealed that LPCAT1-associated genes were primarily enriched in immune and cancer progression pathways, such as the JAK/STAT, MYC, and EMT, etc. Moreover, LPCAT1 expression was closely associated with immune cell infiltration and immune checkpoint-related gene expression. Interestingly, LPCAT1 expression levels were generally higher in patients in the immunotherapy response group. The combination of LPCAT1 and PDL1 serves as an effective predictor of immunotherapy response. In conclusion, LPCAT1 is involved in immune regulation and tumor progression and holds promise as a biomarker for predicting patient outcomes and immunotherapy efficacy.
RESUMO
Given the importance of peroxisome proliferator-activated receptor (PPAR)-gamma in epidermal inflammation and carcinogenesis, we analyzed the transcriptomic changes observed in epidermal PPARγ-deficient mice (Pparg-/-epi). A gene set enrichment analysis revealed a close association with epithelial malignancy, inflammatory cell chemotaxis, and cell survival. Single-cell sequencing of Pparg-/-epi mice verified changes to the stromal compartment, including increased inflammatory cell infiltrates, particularly neutrophils, and an increase in fibroblasts expressing myofibroblast marker genes. A comparison of transcriptomic data from Pparg-/-epi and publicly available human and/or mouse actinic keratoses (AKs) and cutaneous squamous cell carcinomas (SCCs) revealed a strong correlation between the datasets. Importantly, PPAR signaling was the top common inhibited canonical pathway in AKs and SCCs. Both AKs and SCCs also had significantly reduced PPARG expression and PPARγ activity z-scores. Smaller reductions in PPARA expression and PPARα activity and increased PPARD expression but reduced PPARδ activation were also observed. Reduced PPAR activity was also associated with reduced PPARα/RXRα activity, while LPS/IL1-mediated inhibition of RXR activity was significantly activated in the tumor datasets. Notably, these changes were not observed in normal sun-exposed skin relative to non-exposed skin. Finally, Ppara and Pparg were heavily expressed in sebocytes, while Ppard was highly expressed in myofibroblasts, suggesting that PPARδ has a role in myofibroblast differentiation. In conclusion, these data provide strong evidence that PPARγ and possibly PPARα represent key tumor suppressors by acting as master inhibitors of the inflammatory changes found in AKs and SCCs.
Assuntos
Carcinoma de Células Escamosas , Inflamação , Ceratose Actínica , PPAR gama , Transdução de Sinais , Neoplasias Cutâneas , PPAR gama/metabolismo , PPAR gama/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Animais , Humanos , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Ceratose Actínica/patologia , Ceratose Actínica/metabolismo , Ceratose Actínica/genética , Camundongos , Inflamação/patologia , Inflamação/metabolismo , Inflamação/genética , Regulação Neoplásica da Expressão Gênica , Células Estromais/metabolismo , Células Estromais/patologiaRESUMO
Persistence of cancer stem cells (CSCs) is believed to contribute to resistance to platinum-based chemotherapy and disease relapse in ovarian cancer, the fifth leading cause of cancer-related death among US women. HOXC transcript antisense RNA (HOTAIR) is a long noncoding RNA (lncRNA) overexpressed in high-grade serous ovarian cancer and linked to chemoresistance. However, HOTAIR impacts chromatin dynamics in ovarian CSCs and how this oncogenic lncRNA contributes to drug resistant disease are incompletely understood. Here we generated HOTAIR knock-out (KO) high-grade serous ovarian cancer cell lines using paired CRISPR guide RNA design to investigate the function of HOTAIR. We show loss of HOTAIR function re-sensitized ovarian cancer cells to platinum treatment and decreased the population of ovarian CSCs. Furthermore, HOTAIR KO inhibited development of stemness-related phenotypes, including spheroid formation ability, as well as expression of key stemness-associated genes ALDH1A1, NOTCH3, SOX9, and PROM1. HOTAIR KO altered both the cellular transcriptome and chromatin accessibility landscape of multiple oncogenic-associated genes and pathways, including the NF-kB pathway. HOTAIR functions as an oncogene by recruiting enhancer of zeste 2 (EZH2) to catalyze H3K27 tri-methylation to suppress downstream tumor suppressor genes, and it was of interest to inhibit both HOTAIR and EZH2. In vivo, combining a HOTAIR inhibitor with an EZH2 inhibitor and platinum chemotherapy decreased tumor formation and increased survival. These results suggest a key role for HOTAIR in ovarian CSCs and malignant potential. Targeting HOTAIR in combination with epigenetic therapies may represents therapeutic strategy to ameliorate ovarian cancer progression and resistance to platinum-based chemotherapy.
RESUMO
BACKGROUND: Paraquat (PQ) is a widely used herbicide that poisons human by accident or intentional ingestion. PQ poisoning causes systemic inflammatory response syndrome (SIRS) resulting in acute lung injury (ALI) with an extremely high mortality rate. Blood trematode Schistosoma japonicum-produced cystatin (Sj-Cys) is a strong immunomodulatory protein that has been experimentally used to treat inflammation related diseases. In this study, Sj-Cys recombinant protein (rSj-Cys) was used to treat PQ-induced lung injury and the immunological mechanism underlying the therapeutic effect was investigated. METHODS: PQ-induced acute lung injury mouse model was established by intraperitoneally injection of 20â¯mg/kg of paraquat. The poisoned mice were treated with rSj-Cys and the survival rate was observed up to 7 days compared with the group without treatment. The pathological changes of PQ-induced lung injury were observed by examining the histochemical sections of affected lung tissue and the wet to dry ratio of lung as a parameter for inflammation and edema. The levels of the inflammation related cytokines IL-6 and TNF-α and regulatory cytokines IL-10 and TGF-ß were measured in sera and in affected lung tissue using ELISA and their mRNA levels in lung tissue using RT-PCR. The macrophages expressing iNOS were determined as M1 and those expressing Arg-1 as M2 macrophages. The effect of rSj-Cys on the transformation of inflammatory M1 to regulatory M2 macrophages was measured in affected lung tissue in vivo (EKISA and RT-PCR) and in MH-S cell line in vitro (flow cytometry). The expression levels of TLR2 and MyD88 in affected lung tissue were also measured to determine their role in the therapy of rSj-Cys on PQ-induced lung injury. RESULT: We identified that treatment with rSj-Cys significantly improved the survival rate of mice with PQ-induced lung injury from 30â¯% (untreated) to 80â¯%, reduced the pathological damage of poisoning lung tissue, associated with significantly reduced levels of proinflammatory cytokines (IL-6 from 1490 to 590â¯pg/ml, TNF-α from 260 to 150â¯pg/ml) and increased regulatory cytokines (IL-10 from360 to 550â¯pg/ml, and TGF-ß from 220 to 410â¯pg/ml) in both sera (proteins) and affected lung tissue (proteins and mRNAs). The polarization of macrophages from M1to M2 type was found to be involved in the therapeutic effect of rSj-Cys on the PQ-induced acute lung injury, possibly through inhibiting TLR2/MyD88 signaling pathway. CONCLUSIONS: Our study demonstrated the therapeutic effect of rSj-Cys on PQ poisoning caused acute lung injury by inducing M2 macrophage polarization through inhibiting TLR2/MyD88 signaling pathway. The finding in this study provides an alternative approach for the treatment of PQ poisoning and other inflammatory diseases.
Assuntos
Lesão Pulmonar Aguda , Cistatinas , Paraquat , Schistosoma japonicum , Animais , Paraquat/toxicidade , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/tratamento farmacológico , Camundongos , Herbicidas/toxicidade , Macrófagos/efeitos dos fármacos , Pulmão/patologia , Pulmão/efeitos dos fármacos , Masculino , Citocinas/metabolismo , Modelos Animais de DoençasRESUMO
Most cells in solid tumors are exposed to oxygen levels between 0.5% and 5%. We developed an approach that allows collection, processing, and evaluation of cancer and non-cancer cells under physioxia, while preventing exposure to ambient air. This aided comparison of baseline and drug-induced changes in signaling pathways under physioxia and ambient oxygen. Using tumor cells from transgenic models of breast cancer and cells from breast tissues of clinically breast cancer-free women, we demonstrate oxygen-dependent differences in cell preference for epidermal growth factor receptor (EGFR) or platelet-derived growth factor receptor beta (PDGFRß) signaling. Physioxia caused PDGFRß-mediated activation of AKT and extracellular regulated kinase (ERK) that reduced sensitivity to EGFR and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) inhibition and maintained PDGFRß+ epithelial-mesenchymal hybrid cells with potential cancer stem cell (CSC) properties. Cells in ambient air displayed differential EGFR activation and were more sensitive to targeted therapies. Our data emphasize the importance of oxygen considerations in preclinical cancer research to identify effective drug targets and develop combination therapy regimens.
RESUMO
Introduction: Gingivitis is a prevalent complication in adolescents undergoing fixed orthodontic treatments. However, changes in the supragingival microbiome associated with gingivitis and the impact of Candida albicans remain elusive. Therefore, we investigated supragingival microbiome discrepancy and C. albicans colonization in adolescent orthodontic patients with gingivitis. Methods: Dental plaques were collected from 30 gingivitis patients and 24 healthy adolescents, all undergoing fixed orthodontic treatment. The supragingival microbiome composition was analyzed using 16S rRNA sequencing. C. albicans colonization was determined using fungal culture and real-time quantitative polymerase chain reaction. Results: Our analysis revealed significantly heightened microbial diversity in the Gingivitis group. Notably, patients with gingivitis exhibited an enrichment of periodontal pathogens, such as Saccharibacteria (TM7) [G-1], Selenomonas, Actinomyces dentalis, and Selenomonas sputigena. Additionally, 33% of the gingivitis patients tested positive for C. albicans, exhibiting significantly elevated levels of absolute abundance, while all healthy patients tested negative. Significant differences in microbial composition were also noted between C. albicans-positive and -negative samples in the Gingivitis group. Conclusion: Significant disparities were observed in the supragingival microbiome of adolescent orthodontic patients with and without gingivitis. The presence of C. albicans in the supragingival plaque may alter the microbiome composition and potentially contribute to gingivitis pathogenesis.
⢠Adolescent patients undergoing fixed orthodontic treatment, with and without gingivitis, show significant differences in their marginal supragingival plaque microbiomes. ⢠Adolescent patients with gingivitis exhibit a significantly higher rate of Candida albicans colonization than healthy individuals. ⢠The colonization of C. albicans alters the composition of the marginal supragingival plaque microbiome in patients with gingivitis.
RESUMO
CONTEXT.: Pediatric B-cell acute lymphoblastic leukemia is genetically and phenotypically heterogeneous, with a genetic landscape including chromosomal translocations that disrupt ABL proto-oncogene 1, non-receptor tyrosine kinase (ABL1). OBJECTIVE.: To characterize an uncommon chromosomal translocation in acute leukemia. DESIGN.: Genetic testing, including karyotype and fluorescence in situ hybridization (FISH) analysis, was used to determine the underlying genetic aberration driving the disorder and to guide disease classification and risk stratification. More-detailed testing using RNA sequencing was performed, based on the results from these assays. Three-dimensional molecular modeling was used to visualize the impact of aberrant fused transcripts identified by transcriptome profiling. RESULTS.: Karyotype analysis of the bone marrow demonstrated a complex karyotype with, most notably, a t(9;10)(q34.1;q22) translocation. ABL1 break-apart probe FISH findings supported ABL1 disruption. Bone marrow transcriptome analysis revealed mutant ZMIZ1::ABL1 (ZMIZ1, zinc finger MIZ-type containing 1) fusion transcripts as a consequence of t(9;10)(q34.1;q22). Three-dimensional modeling of the mutant ZMIZ1::ABL1 fusion protein confirmed an altered ABL1 protein structure compared to that of the wild type, suggesting a constitutively active conformation. CONCLUSIONS.: The t(9;10) translocation resulting in ZMIZ1::ABL1 fusion transcripts is an uncommon form of BCR::ABL1-like (BCR, BCR activator of RhoGEF and GTPase) acute lymphoblastic leukemia. Although the karyotype was complex, identifying the t(9;10)(q34.1;q22) translocation, ABL1 disruption, and ZMIZ1::ABL1 transcript enabled effective ABL1-targeted treatment. Our data support the use of tyrosine kinase inhibitors to treat ZMIZ1::ABL1-derived B-cell acute lymphoblastic leukemia.
RESUMO
Breast cancer (BC) stands out as the cancer with the highest incidence of morbidity and mortality among women worldwide, and its incidence rate is currently trending upwards. Improving the efficiency of breast cancer diagnosis and treatment is crucial, as it can effectively reduce the disease burden. Circulating tumor DNA (ctDNA) originates from the release of tumor cells and plays a pivotal role in the occurrence, development, and metastasis of breast cancer. In recent years, the widespread application of high-throughput analytical technology has made ctDNA a promising biomarker for early cancer detection, monitoring minimal residual disease, early recurrence monitoring, and predicting treatment outcomes. ctDNA-based approaches can effectively compensate for the shortcomings of traditional screening and monitoring methods, which fail to provide real-time information and prospective guidance for breast cancer diagnosis and treatment. This review summarizes the applications of ctDNA in various aspects of breast cancer, including screening, diagnosis, prognosis, treatment, and follow-up. It highlights the current research status in this field and emphasizes the potential for future large-scale clinical applications of ctDNA-based approaches.
Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , DNA Tumoral Circulante , Humanos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/sangue , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Feminino , Biomarcadores Tumorais/sangue , Detecção Precoce de Câncer/métodos , PrognósticoRESUMO
The traditional clinical approaches for oral cancer consist of surgery, chemotherapy, radiotherapy, immunotherapy, and so on. However, these treatments often induce side effects and exhibit limited efficacy. Photothermal therapy (PTT) emerges as a promising adjuvant treatment, utilizing photothermal agents (PTAs) to convert light energy into heat for tumor ablation. Another innovative approach, photodynamic therapy (PDT), leverages photosensitizers (PSs) and specific wavelength laser irradiation to generate reactive oxygen species (ROS), offering an effective and non-toxic alternative. The relevant combination therapies have been reported in the field of oral cancer. Simultaneously, the advancement of nanomaterials has propelled the clinical application of PTT and PDT. Therefore, a comprehensive understanding of PTT and PDT is required for better application in oral cancer treatment. Here, we review the use of PTT and PDT in oral cancer, including noble metal materials (e.g., Au nanoparticles), carbon materials (e.g., graphene oxide), organic dye molecules (e.g., indocyanine green), organic molecule-based agents (e.g., porphyrin-analog phthalocyanine) and other inorganic materials (e.g., MXenes), exemplify the advantages and disadvantages of common PTAs and PSs, and summarize the combination therapies of PTT with PDT, PTT/PDT with chemotherapy, PTT with radiotherapy, PTT/PDT with immunotherapy, and PTT/PDT with gene therapy in the treatment of oral cancer. The challenges related to the PTT/PDT combination therapy and potential solutions are also discussed.
Assuntos
Neoplasias Bucais , Nanoestruturas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/patologia , Nanoestruturas/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Terapia Fototérmica , AnimaisRESUMO
INTRODUCTION: This study aimed to perform a bibliometric analysis examining contributing countries and collaborative networks, authors and collaborative relationships, the performance of the institutions, and cocited journals and references in 3 major orthodontic journals (American Journal of Orthodontics and Dentofacial Orthopedics, European Journal of Orthodontics, and Angle Orthodontist) over two 10-year periods (2002-2011 and 2012-2021). METHODS: In this study, 4432 publications in the first decade and 4012 publications in the second decade were quantitatively analyzed and visualized using visualization software such as VOSviewer (Leiden University, Leiden, Netherlands), CiteSpace (Drexel University, Philadelphia, Pa), and Scimago Graphica (SCImago Lab, Spain). RESULTS: Institutions in the United States had the highest number of publications through the 2 decades, whereas Brazil, South Korea, and China achieved significant improvements in performance in the second decade compared with the first. Closer collaborative networks among scholars were revealed in the second decade. The cocitation analysis of the journals showed that highly cited journals included more professional orthodontic journals in the second decade than in the first decade. CONCLUSIONS: Bibliometric analysis of publications in 3 major orthodontic journals over two 10-year periods revealed a trend of diversification in countries and institutions participating in publishing, international collaborations, and collaboration networks among authors in the field of orthodontics during the 2 decades.
Assuntos
Bibliometria , Ortodontia , Publicações Periódicas como Assunto , Ortodontia/estatística & dados numéricos , Publicações Periódicas como Assunto/estatística & dados numéricos , Humanos , Editoração/estatística & dados numéricos , Fatores de TempoRESUMO
A systems analysis was conducted to determine the potential molecular mechanisms underlying differential immunogenicity and protective efficacy results of a clinical trial of the radiation-attenuated whole-sporozoite PfSPZ vaccine in African infants. Innate immune activation and myeloid signatures at prevaccination baseline correlated with protection from P. falciparum parasitemia in placebo controls. These same signatures were associated with susceptibility to parasitemia among infants who received the highest and most protective PfSPZ vaccine dose. Machine learning identified spliceosome, proteosome, and resting DC signatures as prevaccination features predictive of protection after highest-dose PfSPZ vaccination, whereas baseline circumsporozoite protein-specific (CSP-specific) IgG predicted nonprotection. Prevaccination innate inflammatory and myeloid signatures were associated with higher sporozoite-specific IgG Ab response but undetectable PfSPZ-specific CD8+ T cell responses after vaccination. Consistent with these human data, innate stimulation in vivo conferred protection against infection by sporozoite injection in malaria-naive mice while diminishing the CD8+ T cell response to radiation-attenuated sporozoites. These data suggest a dichotomous role of innate stimulation for malaria protection and induction of protective immunity by whole-sporozoite malaria vaccines. The uncoupling of vaccine-induced protective immunity achieved by Abs from more protective CD8+ T cell responses suggests that PfSPZ vaccine efficacy in malaria-endemic settings may be constrained by opposing antigen presentation pathways.
Assuntos
Imunidade Inata , Vacinas Antimaláricas , Malária Falciparum , Plasmodium falciparum , Esporozoítos , Vacinas Atenuadas , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Imunidade Inata/imunologia , Humanos , Animais , Malária Falciparum/prevenção & controle , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Camundongos , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem , Esporozoítos/imunologia , Esporozoítos/efeitos da radiação , Linfócitos T CD8-Positivos/imunologia , Lactente , Proteínas de Protozoários/imunologia , Anticorpos Antiprotozoários/imunologia , Feminino , Parasitemia/imunologia , Parasitemia/prevenção & controle , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Eficácia de VacinasRESUMO
Although genome-wide association studies (GWAS) have identified loci associated with alcohol consumption and alcohol use disorder (AUD), they do not identify which variants are functional. To approach this, we evaluated the impact of variants in 3' untranslated regions (3'-UTRs) of genes in loci associated with substance use and neurological disorders using a massively parallel reporter assay (MPRA) in neuroblastoma and microglia cells. Functionally impactful variants explained a higher proportion of heritability of alcohol traits than non-functional variants. We identified genes whose 3'UTR activities are associated with AUD and alcohol consumption by combining variant effects from MPRA with GWAS results. We examined their effects by evaluating gene expression after CRISPR inhibition of neuronal cells and stratifying brain tissue samples by MPRA-derived 3'-UTR activity. A pathway analysis of differentially expressed genes identified inflammation response pathways. These analyses suggest that variation in response to inflammation contributes to the propensity to increase alcohol consumption.