Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 31(6): 738-752, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38594444

RESUMO

Glioblastoma (GBM) is the most aggressive malignant primary brain tumor characterized by a highly heterogeneous and immunosuppressive tumor microenvironment (TME). The symbiotic interactions between glioblastoma stem cells (GSCs) and tumor-associated macrophages (TAM) in the TME are critical for tumor progression. Here, we identified that IFI35, a transcriptional regulatory factor, plays both cell-intrinsic and cell-extrinsic roles in maintaining GSCs and the immunosuppressive TME. IFI35 induced non-canonical NF-kB signaling through proteasomal processing of p105 to the DNA-binding transcription factor p50, which heterodimerizes with RELB (RELB/p50), and activated cell chemotaxis in a cell-autonomous manner. Further, IFI35 induced recruitment and maintenance of M2-like TAMs in TME in a paracrine manner. Targeting IFI35 effectively suppressed in vivo tumor growth and prolonged survival of orthotopic xenograft-bearing mice. Collectively, these findings reveal the tumor-promoting functions of IFI35 and suggest that targeting IFI35 or its downstream effectors may provide effective approaches to improve GBM treatment.


Assuntos
Glioblastoma , NF-kappa B , Células-Tronco Neoplásicas , Transdução de Sinais , Macrófagos Associados a Tumor , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/genética , Humanos , Animais , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , NF-kappa B/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Microambiente Tumoral
3.
Clin Cancer Res ; 29(18): 3779-3792, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37439870

RESUMO

PURPOSE: The dynamic interplay between glioblastoma stem cells (GSC) and tumor-associated macrophages (TAM) sculpts the tumor immune microenvironment (TIME) and promotes malignant progression of glioblastoma (GBM). However, the mechanisms underlying this interaction are still incompletely understood. Here, we investigate the role of CXCL8 in the maintenance of the mesenchymal state of GSC populations and reprogramming the TIME to an immunosuppressive state. EXPERIMENTAL DESIGN: We performed an integrative multi-omics analyses of RNA sequencing, GBM mRNA expression datasets, immune signatures, and epigenetic profiling to define the specific genes expressed in the mesenchymal GSC subsets. We then used patient-derived GSCs and a xenograft murine model to investigate the mechanisms of tumor-intrinsic and extrinsic factor to maintain the mesenchymal state of GSCs and induce TAM polarization. RESULTS: We identified that CXCL8 was preferentially expressed and secreted by mesenchymal GSCs and activated PI3K/AKT and NF-κB signaling to maintain GSC proliferation, survival, and self-renewal through a cell-intrinsic mechanism. CXCL8 induced signaling through a CXCR2-JAK2/STAT3 axis in TAMs, which supported an M2-like TAM phenotype through a paracrine, cell-extrinsic pathway. Genetic- and small molecule-based inhibition of these dual complementary signaling cascades in GSCs and TAMs suppressed GBM tumor growth and prolonged survival of orthotopic xenograft-bearing mice. CONCLUSIONS: CXCL8 plays critical roles in maintaining the mesenchymal state of GSCs and M2-like TAM polarization in GBM, highlighting an interplay between cell-autonomous and cell-extrinsic mechanisms. Targeting CXCL8 and its downstream effectors may effectively improve GBM treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Animais , Camundongos , Glioblastoma/patologia , Macrófagos Associados a Tumor/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo , Proliferação de Células , Microambiente Tumoral/genética
4.
Neuro Oncol ; 25(9): 1578-1591, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36934350

RESUMO

BACKGROUND: Glioblastomas (GBMs) display striking dysregulation of metabolism to promote tumor growth. Glioblastoma stem cells (GSCs) adapt to regions of heterogeneous nutrient availability, yet display dependency on de novo cholesterol biosynthesis. The transcription factor Sterol Regulatory Element-Binding Protein 2 (SREBP2) regulates cholesterol biosynthesis enzymes and uptake receptors. Here, we investigate adaptive behavior of GSCs under different cholesterol supplies. METHODS: In silico analysis of patient tumors demonstrated enrichment of cholesterol synthesis associated with decreased angiogenesis. Comparative gene expression of cholesterol biosynthesis enzymes in paired GBM specimens and GSCs were performed. In vitro and in vivo loss-of-function genetic and pharmacologic assays were conducted to evaluate the effect of SREBP2 on GBM cholesterol biosynthesis, proliferation, and self-renewal. Chromatin immunoprecipitation quantitative real-time PCR was leveraged to map the regulation of SREBP2 to cholesterol biosynthesis enzymes and uptake receptors in GSCs. RESULTS: Cholesterol biosynthetic enzymes were expressed at higher levels in GBM tumor cores than in invasive margins. SREBP2 promoted cholesterol biosynthesis in GSCs, especially under starvation, as well as proliferation, self-renewal, and tumor growth. SREBP2 governed the balance between cholesterol biosynthesis and uptake in different nutrient conditions. CONCLUSIONS: SREBP2 displays context-specific regulation of cholesterol biology based on its availability in the microenvironment with induction of cholesterol biosynthesis in the tumor core and uptake in the margin, informing a novel treatment strategy for GBM.


Assuntos
Glioblastoma , Humanos , Linhagem Celular Tumoral , Colesterol/metabolismo , Regulação da Expressão Gênica , Glioblastoma/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco/metabolismo , Células-Tronco/patologia , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Microambiente Tumoral
5.
Cancer Res ; 82(18): 3321-3334, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35841593

RESUMO

Glioblastoma (GBM) is a complex ecosystem that includes a heterogeneous tumor population and the tumor-immune microenvironment (TIME), prominently containing tumor-associated macrophages (TAM) and microglia. Here, we demonstrated that ß2-microglobulin (B2M), a subunit of the class I major histocompatibility complex (MHC-I), promotes the maintenance of stem-like neoplastic populations and reprograms the TIME to an anti-inflammatory, tumor-promoting state. B2M activated PI3K/AKT/mTOR signaling by interacting with PIP5K1A in GBM stem cells (GSC) and promoting MYC-induced secretion of transforming growth factor-ß1 (TGFß1). Inhibition of B2M attenuated GSC survival, self-renewal, and tumor growth. B2M-induced TGFß1 secretion activated paracrine SMAD and PI3K/AKT signaling in TAMs and promoted an M2-like macrophage phenotype. These findings reveal tumor-promoting functions of B2M and suggest that targeting B2M or its downstream axis may provide an effective approach for treating GBM. SIGNIFICANCE: ß2-microglobulin signaling in glioblastoma cells activates a PI3K/AKT/MYC/TGFß1 axis that maintains stem cells and induces M2-like macrophage polarization, highlighting potential therapeutic strategies for targeting tumor cells and the immunosuppressive microenvironment in glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Microambiente Tumoral , Microglobulina beta-2/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Ecossistema , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Células-Tronco/patologia , Serina-Treonina Quinases TOR , Fator de Crescimento Transformador beta1 , Macrófagos Associados a Tumor
6.
Zhongguo Zhen Jiu ; 36(9): 923-926, 2016 09 12.
Artigo em Chinês | MEDLINE | ID: mdl-29231385

RESUMO

OBJECTIVE: To compare the clinical efficacy differences between relaxing needling combined with rehabilitation training and rehabilitation training alone for medial collateral ligament (MCL) injury of knee joint. METHODS: Sixty cases of MCL injury were randomly assigned into an observation group (30 cases, one case dropping out) and a control group (30 cases, two cases dropping out). Patients in the control group were treated with rehabilitation training; based on the treatment of control group, patients in the observation group were additionally treated with relaxing needles at ashi points, Heding (EX-LE 2), Neixiyan (EX-LE 4), Dubi (ST 35), Yanglingquan (GB 34), Liangqiu (ST 34), etc. The treatment was given once a day; six treatments were taken as one course, and totally four courses were given. The visual analogue scale (VAS), Lysholm knee function score and clinical efficacy before and after treatment were evaluated; also the safety was evaluated. RESULTS: After treatment, VAS scores were apparently reduced and the Lysholm scores were obviously increased in the two groups (all P<0.001). The improvement of VAS and Lysholm scores in the observation group were superior to that in the control group (both P<0.05). The effective rate was 93.1% (27/29) in the observation group, which was superior to 71.4% (20/28) in the control group (P<0.05). During the treatment, no adverse events occurred in the two groups. CONCLUSIONS: Relaxing needling combined with rehabilitation training can effectively improve the swel-ling, pain and other symptoms of MCL injury, which is superior to rehabilitation training alone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA