Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 365: 121599, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38968895

RESUMO

To enhance the remediation effect of heavy metal pollution, organic fertilizers with different maturity levels were added to cadmium-contaminated soil. The remediation effect was determined by evaluating the form transformation and bioavailability of cadmium in heavy metal-contaminated soil. -Results showed that when the maturity was 50%, although the soil humus (HS) content increased, it didn't contribute to reducing the bioavailability of soil Cd. Appropriately increasing the maturity (GI ≥ 80%), the HS increased by 113.95%∼157.96%, and reduced significantly the bioavailability of soil Cd, among the exchangeable Cd decreased by 16.04%∼33.51% (P < 0.01). The structural equation modeling (SEM) revealed that HS content is a critical factor influencing the transformation of Cd forms and the reduction of exchangeable Cd accumulation; the HS and residual Cd content were positively correlated with the maturity (P < 0.01), while exchangeable Cd content was negatively correlated with maturity (P < 0.01), and the correlation increased with increasing maturity. In summary, appropriately increasing the maturity (GI ≥ 80%) can increase significantly HS, promote the transformation of exchangeable Cd into residual Cd, and ultimately enhance the effectiveness of organic fertilizers in the remediation of soil Cd pollution. These results provide a new insight into the remediation of Cd-contaminated soil through organic fertilizer as soil amendment in Cd-contaminated soil.


Assuntos
Cádmio , Fertilizantes , Poluentes do Solo , Solo , Fertilizantes/análise , Cádmio/análise , Poluentes do Solo/análise , Solo/química , Metais Pesados/análise
2.
Int J Mol Sci ; 15(4): 5536-52, 2014 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-24690996

RESUMO

Atherosclerosis and its complications are characterized by lipid-laden foam cell formation. Recently, an obvious up-regulation of BMP4 was observed in atherosclerotic plaque, however, its function and the underlying mechanism remains unknown. In our study, BMP4 pretreatment induced macrophage foam cell formation. Furthermore, a dramatic increase in the ratio of cholesteryl ester (CE) to total cholesterol (TC) was observed in BMP4-treated macrophages, accompanied by the reduction of cholesterol outflow. Importantly, BMP4 stimulation inhibited the expression levels of the two most important cellular cholesterol transporters ABCA1 and ABCG1, indicating that BMP4 may induce formation of foam cells by attenuating transporters expression. Further mechanism analysis showed that BMPR-2, one of the BMP4 receptors, was significantly increased in BMP4 treated macrophage foam cells. That blocking its expression using specific siRNA significantly increased ABCA1 and ABCG1 levels. Additionally, BMP4 treatment triggered the activation of Smad1/5/8 pathway by BMPR-2 signaling. After blocking the Smad1/5/8 with its inhibitor, ABCA1 and ABCG1 expression levels were up-regulated significantly, suggesting that BMP4 inhibited the expression of ABCA1 and ABCG1 through the BMPR-2/Smad1/2/8 signaling pathway. Therefore, our results will provide a new insight about how BMP4 accelerate the progressio of atherosclerosis, and it may become a potential target against atherosclerosis and its complications.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/biossíntese , Transportadores de Cassetes de Ligação de ATP/biossíntese , Aterosclerose/patologia , Proteína Morfogenética Óssea 4/metabolismo , Células Espumosas/metabolismo , Lipoproteínas/biossíntese , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Animais , Transporte Biológico , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Linhagem Celular , Ésteres do Colesterol/metabolismo , Lipídeos/biossíntese , Camundongos , Placa Aterosclerótica/patologia , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais/genética , Proteína Smad1/genética , Proteína Smad5/genética , Proteína Smad8/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA